k uchun yechish (complex solution)
\left\{\begin{matrix}k=-\frac{x+3}{3x+1}\text{, }&x\neq -\frac{1}{3}\text{ and }x\neq 0\text{ and }x\neq -\frac{5}{3}\\k\in \mathrm{C}\setminus -\frac{1}{3},-3,\frac{1}{3}\text{, }&x=0\end{matrix}\right,
k uchun yechish
\left\{\begin{matrix}k=-\frac{x+3}{3x+1}\text{, }&x\neq -\frac{1}{3}\text{ and }x\neq -\frac{5}{3}\text{ and }x\neq 0\\k\in \mathrm{R}\setminus -\frac{1}{3},\frac{1}{3},-3\text{, }&x=0\end{matrix}\right,
x uchun yechish (complex solution)
x=-\frac{k+3}{3k+1}
x=0\text{, }k\neq -\frac{1}{3}\text{ and }k\neq -3\text{ and }k\neq \frac{1}{3}
x uchun yechish
x=-\frac{k+3}{3k+1}
x=0\text{, }k\neq -3\text{ and }|k|\neq \frac{1}{3}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(3k+1\right)x^{2}+3k-1+\left(k+3\right)x=3k-1
k qiymati -3,-\frac{1}{3},\frac{1}{3} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(3k-1\right)\left(k+3\right)\left(3k+1\right) ga, \left(3k+1\right)\left(3k^{2}+8k-3\right),9k^{2}-1,3k^{2}+10k+3 ning eng kichik karralisiga ko‘paytiring.
3kx^{2}+x^{2}+3k-1+\left(k+3\right)x=3k-1
3k+1 ga x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3kx^{2}+x^{2}+3k-1+kx+3x=3k-1
k+3 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3kx^{2}+x^{2}+3k-1+kx+3x-3k=-1
Ikkala tarafdan 3k ni ayirish.
3kx^{2}+x^{2}-1+kx+3x=-1
0 ni olish uchun 3k va -3k ni birlashtirish.
3kx^{2}-1+kx+3x=-1-x^{2}
Ikkala tarafdan x^{2} ni ayirish.
3kx^{2}+kx+3x=-1-x^{2}+1
1 ni ikki tarafga qo’shing.
3kx^{2}+kx+3x=-x^{2}
0 olish uchun -1 va 1'ni qo'shing.
3kx^{2}+kx=-x^{2}-3x
Ikkala tarafdan 3x ni ayirish.
\left(3x^{2}+x\right)k=-x^{2}-3x
k'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(3x^{2}+x\right)k}{3x^{2}+x}=-\frac{x\left(x+3\right)}{3x^{2}+x}
Ikki tarafini 3x^{2}+x ga bo‘ling.
k=-\frac{x\left(x+3\right)}{3x^{2}+x}
3x^{2}+x ga bo'lish 3x^{2}+x ga ko'paytirishni bekor qiladi.
k=-\frac{x+3}{3x+1}
-x\left(3+x\right) ni 3x^{2}+x ga bo'lish.
k=-\frac{x+3}{3x+1}\text{, }k\neq -\frac{1}{3}\text{ and }k\neq -3\text{ and }k\neq \frac{1}{3}
k qiymati -\frac{1}{3},-3,\frac{1}{3} qiymatlaridan birortasiga teng bo‘lmaydi.
\left(3k+1\right)x^{2}+3k-1+\left(k+3\right)x=3k-1
k qiymati -3,-\frac{1}{3},\frac{1}{3} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(3k-1\right)\left(k+3\right)\left(3k+1\right) ga, \left(3k+1\right)\left(3k^{2}+8k-3\right),9k^{2}-1,3k^{2}+10k+3 ning eng kichik karralisiga ko‘paytiring.
3kx^{2}+x^{2}+3k-1+\left(k+3\right)x=3k-1
3k+1 ga x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3kx^{2}+x^{2}+3k-1+kx+3x=3k-1
k+3 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3kx^{2}+x^{2}+3k-1+kx+3x-3k=-1
Ikkala tarafdan 3k ni ayirish.
3kx^{2}+x^{2}-1+kx+3x=-1
0 ni olish uchun 3k va -3k ni birlashtirish.
3kx^{2}-1+kx+3x=-1-x^{2}
Ikkala tarafdan x^{2} ni ayirish.
3kx^{2}+kx+3x=-1-x^{2}+1
1 ni ikki tarafga qo’shing.
3kx^{2}+kx+3x=-x^{2}
0 olish uchun -1 va 1'ni qo'shing.
3kx^{2}+kx=-x^{2}-3x
Ikkala tarafdan 3x ni ayirish.
\left(3x^{2}+x\right)k=-x^{2}-3x
k'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(3x^{2}+x\right)k}{3x^{2}+x}=-\frac{x\left(x+3\right)}{3x^{2}+x}
Ikki tarafini 3x^{2}+x ga bo‘ling.
k=-\frac{x\left(x+3\right)}{3x^{2}+x}
3x^{2}+x ga bo'lish 3x^{2}+x ga ko'paytirishni bekor qiladi.
k=-\frac{x+3}{3x+1}
-x\left(3+x\right) ni 3x^{2}+x ga bo'lish.
k=-\frac{x+3}{3x+1}\text{, }k\neq -\frac{1}{3}\text{ and }k\neq -3\text{ and }k\neq \frac{1}{3}
k qiymati -\frac{1}{3},-3,\frac{1}{3} qiymatlaridan birortasiga teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}