Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2i^{2}}{1+i}
Binomlarni ko‘paytirgandek 3+4i va 1+2i murakkab sonlarni ko‘paytiring.
\frac{3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2\left(-1\right)}{1+i}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{3+6i+4i-8}{1+i}
3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{3-8+\left(6+4\right)i}{1+i}
3+6i+4i-8 ichida real va mavhum qismlarni birlashtiring.
\frac{-5+10i}{1+i}
3-8+\left(6+4\right)i ichida qo‘shishlarni bajaring.
\frac{\left(-5+10i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 1-i.
\frac{\left(-5+10i\right)\left(1-i\right)}{1^{2}-i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-5+10i\right)\left(1-i\right)}{2}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{-5-5\left(-i\right)+10i\times 1+10\left(-1\right)i^{2}}{2}
Binomlarni ko‘paytirgandek -5+10i va 1-i murakkab sonlarni ko‘paytiring.
\frac{-5-5\left(-i\right)+10i\times 1+10\left(-1\right)\left(-1\right)}{2}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{-5+5i+10i+10}{2}
-5-5\left(-i\right)+10i\times 1+10\left(-1\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{-5+10+\left(5+10\right)i}{2}
-5+5i+10i+10 ichida real va mavhum qismlarni birlashtiring.
\frac{5+15i}{2}
-5+10+\left(5+10\right)i ichida qo‘shishlarni bajaring.
\frac{5}{2}+\frac{15}{2}i
\frac{5}{2}+\frac{15}{2}i ni olish uchun 5+15i ni 2 ga bo‘ling.
Re(\frac{3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2i^{2}}{1+i})
Binomlarni ko‘paytirgandek 3+4i va 1+2i murakkab sonlarni ko‘paytiring.
Re(\frac{3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2\left(-1\right)}{1+i})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{3+6i+4i-8}{1+i})
3\times 1+3\times \left(2i\right)+4i\times 1+4\times 2\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{3-8+\left(6+4\right)i}{1+i})
3+6i+4i-8 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{-5+10i}{1+i})
3-8+\left(6+4\right)i ichida qo‘shishlarni bajaring.
Re(\frac{\left(-5+10i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
\frac{-5+10i}{1+i}ning surat va maxrajini murakkab tutash maxraj 1-i bilan ko‘paytiring.
Re(\frac{\left(-5+10i\right)\left(1-i\right)}{1^{2}-i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-5+10i\right)\left(1-i\right)}{2})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{-5-5\left(-i\right)+10i\times 1+10\left(-1\right)i^{2}}{2})
Binomlarni ko‘paytirgandek -5+10i va 1-i murakkab sonlarni ko‘paytiring.
Re(\frac{-5-5\left(-i\right)+10i\times 1+10\left(-1\right)\left(-1\right)}{2})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{-5+5i+10i+10}{2})
-5-5\left(-i\right)+10i\times 1+10\left(-1\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{-5+10+\left(5+10\right)i}{2})
-5+5i+10i+10 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{5+15i}{2})
-5+10+\left(5+10\right)i ichida qo‘shishlarni bajaring.
Re(\frac{5}{2}+\frac{15}{2}i)
\frac{5}{2}+\frac{15}{2}i ni olish uchun 5+15i ni 2 ga bo‘ling.
\frac{5}{2}
\frac{5}{2}+\frac{15}{2}i ning real qismi – \frac{5}{2}.