x uchun yechish
x=\frac{\sqrt{154}}{25}\approx 0,496386946
x=-\frac{\sqrt{154}}{25}\approx -0,496386946
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(2x\right)^{2}=9856\times 10^{-4}
Tenglamaning ikkala tarafini 32 ga ko'paytirish.
2^{2}x^{2}=9856\times 10^{-4}
\left(2x\right)^{2} ni kengaytirish.
4x^{2}=9856\times 10^{-4}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4x^{2}=9856\times \frac{1}{10000}
-4 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{10000} ni qiymatni oling.
4x^{2}=\frac{616}{625}
\frac{616}{625} hosil qilish uchun 9856 va \frac{1}{10000} ni ko'paytirish.
x^{2}=\frac{\frac{616}{625}}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}=\frac{616}{625\times 4}
\frac{\frac{616}{625}}{4} ni yagona kasrga aylantiring.
x^{2}=\frac{616}{2500}
2500 hosil qilish uchun 625 va 4 ni ko'paytirish.
x^{2}=\frac{154}{625}
\frac{616}{2500} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{\sqrt{154}}{25} x=-\frac{\sqrt{154}}{25}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\left(2x\right)^{2}=9856\times 10^{-4}
Tenglamaning ikkala tarafini 32 ga ko'paytirish.
2^{2}x^{2}=9856\times 10^{-4}
\left(2x\right)^{2} ni kengaytirish.
4x^{2}=9856\times 10^{-4}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4x^{2}=9856\times \frac{1}{10000}
-4 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{10000} ni qiymatni oling.
4x^{2}=\frac{616}{625}
\frac{616}{625} hosil qilish uchun 9856 va \frac{1}{10000} ni ko'paytirish.
4x^{2}-\frac{616}{625}=0
Ikkala tarafdan \frac{616}{625} ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-\frac{616}{625}\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 0 ni b va -\frac{616}{625} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 4\left(-\frac{616}{625}\right)}}{2\times 4}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-16\left(-\frac{616}{625}\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{0±\sqrt{\frac{9856}{625}}}{2\times 4}
-16 ni -\frac{616}{625} marotabaga ko'paytirish.
x=\frac{0±\frac{8\sqrt{154}}{25}}{2\times 4}
\frac{9856}{625} ning kvadrat ildizini chiqarish.
x=\frac{0±\frac{8\sqrt{154}}{25}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{\sqrt{154}}{25}
x=\frac{0±\frac{8\sqrt{154}}{25}}{8} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{154}}{25}
x=\frac{0±\frac{8\sqrt{154}}{25}}{8} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{154}}{25} x=-\frac{\sqrt{154}}{25}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}