Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(2x\right)^{2}=12\times 10^{-2}\left(x-1\right)\left(x+4\right)
x qiymati -4,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+4\right) ga ko'paytirish.
2^{2}x^{2}=12\times 10^{-2}\left(x-1\right)\left(x+4\right)
\left(2x\right)^{2} ni kengaytirish.
4x^{2}=12\times 10^{-2}\left(x-1\right)\left(x+4\right)
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4x^{2}=12\times \frac{1}{100}\left(x-1\right)\left(x+4\right)
-2 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100} ni qiymatni oling.
4x^{2}=\frac{3}{25}\left(x-1\right)\left(x+4\right)
\frac{3}{25} hosil qilish uchun 12 va \frac{1}{100} ni ko'paytirish.
4x^{2}=\left(\frac{3}{25}x-\frac{3}{25}\right)\left(x+4\right)
\frac{3}{25} ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}=\frac{3}{25}x^{2}+\frac{9}{25}x-\frac{12}{25}
\frac{3}{25}x-\frac{3}{25} ga x+4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
4x^{2}-\frac{3}{25}x^{2}=\frac{9}{25}x-\frac{12}{25}
Ikkala tarafdan \frac{3}{25}x^{2} ni ayirish.
\frac{97}{25}x^{2}=\frac{9}{25}x-\frac{12}{25}
\frac{97}{25}x^{2} ni olish uchun 4x^{2} va -\frac{3}{25}x^{2} ni birlashtirish.
\frac{97}{25}x^{2}-\frac{9}{25}x=-\frac{12}{25}
Ikkala tarafdan \frac{9}{25}x ni ayirish.
\frac{97}{25}x^{2}-\frac{9}{25}x+\frac{12}{25}=0
\frac{12}{25} ni ikki tarafga qo’shing.
x=\frac{-\left(-\frac{9}{25}\right)±\sqrt{\left(-\frac{9}{25}\right)^{2}-4\times \frac{97}{25}\times \frac{12}{25}}}{2\times \frac{97}{25}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{97}{25} ni a, -\frac{9}{25} ni b va \frac{12}{25} ni c bilan almashtiring.
x=\frac{-\left(-\frac{9}{25}\right)±\sqrt{\frac{81}{625}-4\times \frac{97}{25}\times \frac{12}{25}}}{2\times \frac{97}{25}}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{25} kvadratini chiqarish.
x=\frac{-\left(-\frac{9}{25}\right)±\sqrt{\frac{81}{625}-\frac{388}{25}\times \frac{12}{25}}}{2\times \frac{97}{25}}
-4 ni \frac{97}{25} marotabaga ko'paytirish.
x=\frac{-\left(-\frac{9}{25}\right)±\sqrt{\frac{81-4656}{625}}}{2\times \frac{97}{25}}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali -\frac{388}{25} ni \frac{12}{25} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
x=\frac{-\left(-\frac{9}{25}\right)±\sqrt{-\frac{183}{25}}}{2\times \frac{97}{25}}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{81}{625} ni -\frac{4656}{625} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{-\left(-\frac{9}{25}\right)±\frac{\sqrt{183}i}{5}}{2\times \frac{97}{25}}
-\frac{183}{25} ning kvadrat ildizini chiqarish.
x=\frac{\frac{9}{25}±\frac{\sqrt{183}i}{5}}{2\times \frac{97}{25}}
-\frac{9}{25} ning teskarisi \frac{9}{25} ga teng.
x=\frac{\frac{9}{25}±\frac{\sqrt{183}i}{5}}{\frac{194}{25}}
2 ni \frac{97}{25} marotabaga ko'paytirish.
x=\frac{\frac{\sqrt{183}i}{5}+\frac{9}{25}}{\frac{194}{25}}
x=\frac{\frac{9}{25}±\frac{\sqrt{183}i}{5}}{\frac{194}{25}} tenglamasini yeching, bunda ± musbat. \frac{9}{25} ni \frac{i\sqrt{183}}{5} ga qo'shish.
x=\frac{9+5\sqrt{183}i}{194}
\frac{9}{25}+\frac{i\sqrt{183}}{5} ni \frac{194}{25} ga bo'lish \frac{9}{25}+\frac{i\sqrt{183}}{5} ga k'paytirish \frac{194}{25} ga qaytarish.
x=\frac{-\frac{\sqrt{183}i}{5}+\frac{9}{25}}{\frac{194}{25}}
x=\frac{\frac{9}{25}±\frac{\sqrt{183}i}{5}}{\frac{194}{25}} tenglamasini yeching, bunda ± manfiy. \frac{9}{25} dan \frac{i\sqrt{183}}{5} ni ayirish.
x=\frac{-5\sqrt{183}i+9}{194}
\frac{9}{25}-\frac{i\sqrt{183}}{5} ni \frac{194}{25} ga bo'lish \frac{9}{25}-\frac{i\sqrt{183}}{5} ga k'paytirish \frac{194}{25} ga qaytarish.
x=\frac{9+5\sqrt{183}i}{194} x=\frac{-5\sqrt{183}i+9}{194}
Tenglama yechildi.
\left(2x\right)^{2}=12\times 10^{-2}\left(x-1\right)\left(x+4\right)
x qiymati -4,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+4\right) ga ko'paytirish.
2^{2}x^{2}=12\times 10^{-2}\left(x-1\right)\left(x+4\right)
\left(2x\right)^{2} ni kengaytirish.
4x^{2}=12\times 10^{-2}\left(x-1\right)\left(x+4\right)
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4x^{2}=12\times \frac{1}{100}\left(x-1\right)\left(x+4\right)
-2 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100} ni qiymatni oling.
4x^{2}=\frac{3}{25}\left(x-1\right)\left(x+4\right)
\frac{3}{25} hosil qilish uchun 12 va \frac{1}{100} ni ko'paytirish.
4x^{2}=\left(\frac{3}{25}x-\frac{3}{25}\right)\left(x+4\right)
\frac{3}{25} ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}=\frac{3}{25}x^{2}+\frac{9}{25}x-\frac{12}{25}
\frac{3}{25}x-\frac{3}{25} ga x+4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
4x^{2}-\frac{3}{25}x^{2}=\frac{9}{25}x-\frac{12}{25}
Ikkala tarafdan \frac{3}{25}x^{2} ni ayirish.
\frac{97}{25}x^{2}=\frac{9}{25}x-\frac{12}{25}
\frac{97}{25}x^{2} ni olish uchun 4x^{2} va -\frac{3}{25}x^{2} ni birlashtirish.
\frac{97}{25}x^{2}-\frac{9}{25}x=-\frac{12}{25}
Ikkala tarafdan \frac{9}{25}x ni ayirish.
\frac{\frac{97}{25}x^{2}-\frac{9}{25}x}{\frac{97}{25}}=-\frac{\frac{12}{25}}{\frac{97}{25}}
Tenglamaning ikki tarafini \frac{97}{25} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x^{2}+\left(-\frac{\frac{9}{25}}{\frac{97}{25}}\right)x=-\frac{\frac{12}{25}}{\frac{97}{25}}
\frac{97}{25} ga bo'lish \frac{97}{25} ga ko'paytirishni bekor qiladi.
x^{2}-\frac{9}{97}x=-\frac{\frac{12}{25}}{\frac{97}{25}}
-\frac{9}{25} ni \frac{97}{25} ga bo'lish -\frac{9}{25} ga k'paytirish \frac{97}{25} ga qaytarish.
x^{2}-\frac{9}{97}x=-\frac{12}{97}
-\frac{12}{25} ni \frac{97}{25} ga bo'lish -\frac{12}{25} ga k'paytirish \frac{97}{25} ga qaytarish.
x^{2}-\frac{9}{97}x+\left(-\frac{9}{194}\right)^{2}=-\frac{12}{97}+\left(-\frac{9}{194}\right)^{2}
-\frac{9}{97} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{194} olish uchun. Keyin, -\frac{9}{194} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{9}{97}x+\frac{81}{37636}=-\frac{12}{97}+\frac{81}{37636}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{194} kvadratini chiqarish.
x^{2}-\frac{9}{97}x+\frac{81}{37636}=-\frac{4575}{37636}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{12}{97} ni \frac{81}{37636} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{9}{194}\right)^{2}=-\frac{4575}{37636}
x^{2}-\frac{9}{97}x+\frac{81}{37636} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{194}\right)^{2}}=\sqrt{-\frac{4575}{37636}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{194}=\frac{5\sqrt{183}i}{194} x-\frac{9}{194}=-\frac{5\sqrt{183}i}{194}
Qisqartirish.
x=\frac{9+5\sqrt{183}i}{194} x=\frac{-5\sqrt{183}i+9}{194}
\frac{9}{194} ni tenglamaning ikkala tarafiga qo'shish.