Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(2+i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 3+i.
\frac{\left(2+i\right)\left(3+i\right)}{3^{2}-i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+i\right)\left(3+i\right)}{10}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{2\times 3+2i+3i+i^{2}}{10}
Binomlarni ko‘paytirgandek 2+i va 3+i murakkab sonlarni ko‘paytiring.
\frac{2\times 3+2i+3i-1}{10}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{6+2i+3i-1}{10}
2\times 3+2i+3i-1 ichidagi ko‘paytirishlarni bajaring.
\frac{6-1+\left(2+3\right)i}{10}
6+2i+3i-1 ichida real va mavhum qismlarni birlashtiring.
\frac{5+5i}{10}
6-1+\left(2+3\right)i ichida qo‘shishlarni bajaring.
\frac{1}{2}+\frac{1}{2}i
\frac{1}{2}+\frac{1}{2}i ni olish uchun 5+5i ni 10 ga bo‘ling.
Re(\frac{\left(2+i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)})
\frac{2+i}{3-i}ning surat va maxrajini murakkab tutash maxraj 3+i bilan ko‘paytiring.
Re(\frac{\left(2+i\right)\left(3+i\right)}{3^{2}-i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2+i\right)\left(3+i\right)}{10})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{2\times 3+2i+3i+i^{2}}{10})
Binomlarni ko‘paytirgandek 2+i va 3+i murakkab sonlarni ko‘paytiring.
Re(\frac{2\times 3+2i+3i-1}{10})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{6+2i+3i-1}{10})
2\times 3+2i+3i-1 ichidagi ko‘paytirishlarni bajaring.
Re(\frac{6-1+\left(2+3\right)i}{10})
6+2i+3i-1 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{5+5i}{10})
6-1+\left(2+3\right)i ichida qo‘shishlarni bajaring.
Re(\frac{1}{2}+\frac{1}{2}i)
\frac{1}{2}+\frac{1}{2}i ni olish uchun 5+5i ni 10 ga bo‘ling.
\frac{1}{2}
\frac{1}{2}+\frac{1}{2}i ning real qismi – \frac{1}{2}.