Baholash
\frac{64}{17915931}\approx 0,000003572
Omil
\frac{2 ^ {6}}{3 ^ {3} \cdot 11 \cdot 179 \cdot 337} = 3,5722397010794475 \times 10^{-6}
Viktorina
Arithmetic
\frac { ( 18 ^ { 2 } ) ^ { - 2 } \cdot 81 } { 6 ^ { 3 } + 108 \cdot 24 ^ { - 4 } }
Baham ko'rish
Klipbordga nusxa olish
\frac{18^{-4}\times 81}{6^{3}+108\times 24^{-4}}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va -2 ni ko‘paytirib, -4 ni oling.
\frac{\frac{1}{104976}\times 81}{6^{3}+108\times 24^{-4}}
-4 daraja ko‘rsatkichini 18 ga hisoblang va \frac{1}{104976} ni qiymatni oling.
\frac{\frac{1}{1296}}{6^{3}+108\times 24^{-4}}
\frac{1}{1296} hosil qilish uchun \frac{1}{104976} va 81 ni ko'paytirish.
\frac{\frac{1}{1296}}{216+108\times 24^{-4}}
3 daraja ko‘rsatkichini 6 ga hisoblang va 216 ni qiymatni oling.
\frac{\frac{1}{1296}}{216+108\times \frac{1}{331776}}
-4 daraja ko‘rsatkichini 24 ga hisoblang va \frac{1}{331776} ni qiymatni oling.
\frac{\frac{1}{1296}}{216+\frac{1}{3072}}
\frac{1}{3072} hosil qilish uchun 108 va \frac{1}{331776} ni ko'paytirish.
\frac{\frac{1}{1296}}{\frac{663553}{3072}}
\frac{663553}{3072} olish uchun 216 va \frac{1}{3072}'ni qo'shing.
\frac{1}{1296}\times \frac{3072}{663553}
\frac{1}{1296} ni \frac{663553}{3072} ga bo'lish \frac{1}{1296} ga k'paytirish \frac{663553}{3072} ga qaytarish.
\frac{64}{17915931}
\frac{64}{17915931} hosil qilish uchun \frac{1}{1296} va \frac{3072}{663553} ni ko'paytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}