Baholash
-\frac{272\sqrt{3}}{5}+96\approx 1,776436068
Omil
\frac{16 {(30 - 17 \sqrt{3})}}{5} = 1,7764360682530764
Baham ko'rish
Klipbordga nusxa olish
\frac{288-128\sqrt{3}-144\sqrt{3}+64\left(\sqrt{3}\right)^{2}}{5}
16-8\sqrt{3} ifodaning har bir elementini 18-8\sqrt{3} ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{288-272\sqrt{3}+64\left(\sqrt{3}\right)^{2}}{5}
-272\sqrt{3} ni olish uchun -128\sqrt{3} va -144\sqrt{3} ni birlashtirish.
\frac{288-272\sqrt{3}+64\times 3}{5}
\sqrt{3} kvadrati – 3.
\frac{288-272\sqrt{3}+192}{5}
192 hosil qilish uchun 64 va 3 ni ko'paytirish.
\frac{480-272\sqrt{3}}{5}
480 olish uchun 288 va 192'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}