Baholash
\frac{241}{40}=6,025
Omil
\frac{241}{2 ^ {3} \cdot 5} = 6\frac{1}{40} = 6,025
Baham ko'rish
Klipbordga nusxa olish
\frac{\frac{\frac{1}{2}}{\left(\frac{2}{3}\right)^{-1}}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\sqrt[5]{\frac{1}{32}} ni hisoblab, \frac{1}{2} natijasiga ega bo‘ling.
\frac{\frac{\frac{1}{2}}{\frac{3}{2}}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
-1 daraja ko‘rsatkichini \frac{2}{3} ga hisoblang va \frac{3}{2} ni qiymatni oling.
\frac{\frac{1}{2}\times \frac{2}{3}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\frac{1}{2} ni \frac{3}{2} ga bo'lish \frac{1}{2} ga k'paytirish \frac{3}{2} ga qaytarish.
\frac{\frac{1}{3}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\frac{1}{3} hosil qilish uchun \frac{1}{2} va \frac{2}{3} ni ko'paytirish.
\frac{\frac{1}{3}}{\frac{2}{3}\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\frac{2}{3} olish uchun 1 dan \frac{1}{3} ni ayirish.
\frac{\frac{1}{3}}{\frac{2}{3}\times \frac{1}{2}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\frac{2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{\frac{1}{3}}{\frac{1}{3}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\frac{1}{3} hosil qilish uchun \frac{2}{3} va \frac{1}{2} ni ko'paytirish.
\frac{\frac{1}{3}}{\frac{5}{6}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\frac{5}{6} olish uchun \frac{1}{3} va \frac{1}{2}'ni qo'shing.
\frac{1}{3}\times \frac{6}{5}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\frac{1}{3} ni \frac{5}{6} ga bo'lish \frac{1}{3} ga k'paytirish \frac{5}{6} ga qaytarish.
\frac{2}{5}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\frac{2}{5} hosil qilish uchun \frac{1}{3} va \frac{6}{5} ni ko'paytirish.
\frac{2}{5}+\frac{\sqrt{\frac{9}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\frac{9}{25} olish uchun 1 dan \frac{16}{25} ni ayirish.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
\frac{9}{25} boʻlinmasining kvadrat ildizini \frac{\sqrt{9}}{\sqrt{25}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing. Surat va maxrajni kvadrat ildizdan chiqaring.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\frac{15}{2}}}
1 daraja ko‘rsatkichini \frac{15}{2} ga hisoblang va \frac{15}{2} ni qiymatni oling.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{4}{5}\times \frac{2}{15}}
\frac{4}{5} ni \frac{15}{2} ga bo'lish \frac{4}{5} ga k'paytirish \frac{15}{2} ga qaytarish.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{8}{75}}
\frac{8}{75} hosil qilish uchun \frac{4}{5} va \frac{2}{15} ni ko'paytirish.
\frac{2}{5}+\frac{3}{5}\times \frac{75}{8}
\frac{3}{5} ni \frac{8}{75} ga bo'lish \frac{3}{5} ga k'paytirish \frac{8}{75} ga qaytarish.
\frac{2}{5}+\frac{45}{8}
\frac{45}{8} hosil qilish uchun \frac{3}{5} va \frac{75}{8} ni ko'paytirish.
\frac{241}{40}
\frac{241}{40} olish uchun \frac{2}{5} va \frac{45}{8}'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}