Baholash
12
Omil
2^{2}\times 3
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}} maxrajini \sqrt{7}+\sqrt{5} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{5}\right)^{2}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Hisoblang: \left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}{7-5}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
\sqrt{7} kvadratini chiqarish. \sqrt{5} kvadratini chiqarish.
\frac{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
2 olish uchun 7 dan 5 ni ayirish.
\frac{\left(\sqrt{7}+\sqrt{5}\right)^{2}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
\left(\sqrt{7}+\sqrt{5}\right)^{2} hosil qilish uchun \sqrt{7}+\sqrt{5} va \sqrt{7}+\sqrt{5} ni ko'paytirish.
\frac{\left(\sqrt{7}\right)^{2}+2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{7}+\sqrt{5}\right)^{2} kengaytirilishi uchun ishlating.
\frac{7+2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
\sqrt{7} kvadrati – 7.
\frac{7+2\sqrt{35}+\left(\sqrt{5}\right)^{2}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
\sqrt{7} va \sqrt{5} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
\frac{7+2\sqrt{35}+5}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
\sqrt{5} kvadrati – 5.
\frac{12+2\sqrt{35}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
12 olish uchun 7 va 5'ni qo'shing.
6+\sqrt{35}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
6+\sqrt{35} natijani olish uchun 12+2\sqrt{35} ning har bir ifodasini 2 ga bo‘ling.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}
\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}} maxrajini \sqrt{7}-\sqrt{5} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Hisoblang: \left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{7-5}
\sqrt{7} kvadratini chiqarish. \sqrt{5} kvadratini chiqarish.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{2}
2 olish uchun 7 dan 5 ni ayirish.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)^{2}}{2}
\left(\sqrt{7}-\sqrt{5}\right)^{2} hosil qilish uchun \sqrt{7}-\sqrt{5} va \sqrt{7}-\sqrt{5} ni ko'paytirish.
6+\sqrt{35}+\frac{\left(\sqrt{7}\right)^{2}-2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{7}-\sqrt{5}\right)^{2} kengaytirilishi uchun ishlating.
6+\sqrt{35}+\frac{7-2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2}
\sqrt{7} kvadrati – 7.
6+\sqrt{35}+\frac{7-2\sqrt{35}+\left(\sqrt{5}\right)^{2}}{2}
\sqrt{7} va \sqrt{5} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
6+\sqrt{35}+\frac{7-2\sqrt{35}+5}{2}
\sqrt{5} kvadrati – 5.
6+\sqrt{35}+\frac{12-2\sqrt{35}}{2}
12 olish uchun 7 va 5'ni qo'shing.
6+\sqrt{35}+6-\sqrt{35}
6-\sqrt{35} natijani olish uchun 12-2\sqrt{35} ning har bir ifodasini 2 ga bo‘ling.
12+\sqrt{35}-\sqrt{35}
12 olish uchun 6 va 6'ni qo'shing.
12
0 ni olish uchun \sqrt{35} va -\sqrt{35} ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}