Baholash
-\frac{\sqrt{3}}{4}+\frac{1}{2}\approx 0,066987298
Omil
\frac{2 - \sqrt{3}}{4} = 0,0669872981077807
Baham ko'rish
Klipbordga nusxa olish
\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^{2}
\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^{2} hosil qilish uchun \frac{\sqrt{6}-\sqrt{2}}{4} va \frac{\sqrt{6}-\sqrt{2}}{4} ni ko'paytirish.
\frac{\left(\sqrt{6}-\sqrt{2}\right)^{2}}{4^{2}}
\frac{\sqrt{6}-\sqrt{2}}{4}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{6}-\sqrt{2}\right)^{2} kengaytirilishi uchun ishlating.
\frac{6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
\sqrt{6} kvadrati – 6.
\frac{6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Faktor: 6=2\times 3. \sqrt{2\times 3} koʻpaytmasining kvadrat ildizini \sqrt{2}\sqrt{3} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
\frac{6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4^{2}}
2 hosil qilish uchun \sqrt{2} va \sqrt{2} ni ko'paytirish.
\frac{6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4^{2}}
-4 hosil qilish uchun -2 va 2 ni ko'paytirish.
\frac{6-4\sqrt{3}+2}{4^{2}}
\sqrt{2} kvadrati – 2.
\frac{8-4\sqrt{3}}{4^{2}}
8 olish uchun 6 va 2'ni qo'shing.
\frac{8-4\sqrt{3}}{16}
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}