Asosiy tarkibga oʻtish
t uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\sqrt{6}}{\sqrt{6}t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
\sqrt{2} va \sqrt{3} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
\frac{\sqrt{6}\sqrt{6}}{\left(\sqrt{6}\right)^{2}t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
\frac{\sqrt{6}}{\sqrt{6}t} maxrajini \sqrt{6} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\sqrt{6}\sqrt{6}}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
\sqrt{6} kvadrati – 6.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
6 hosil qilish uchun \sqrt{6} va \sqrt{6} ni ko'paytirish.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Hisoblang: \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{2-3}
\sqrt{2} kvadratini chiqarish. \sqrt{3} kvadratini chiqarish.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{-1}
-1 olish uchun 2 dan 3 ni ayirish.
\frac{6}{6t}=-\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)
Istalgan sonni -1 ga boʻlsangiz, uning qarama-qarshisi chiqadi.
\frac{6}{6t}=-\left(\sqrt{6}\sqrt{2}-\sqrt{6}\sqrt{3}\right)
\sqrt{6} ga \sqrt{2}-\sqrt{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{6}{6t}=-\left(\sqrt{2}\sqrt{3}\sqrt{2}-\sqrt{6}\sqrt{3}\right)
Faktor: 6=2\times 3. \sqrt{2\times 3} koʻpaytmasining kvadrat ildizini \sqrt{2}\sqrt{3} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
\frac{6}{6t}=-\left(2\sqrt{3}-\sqrt{6}\sqrt{3}\right)
2 hosil qilish uchun \sqrt{2} va \sqrt{2} ni ko'paytirish.
\frac{6}{6t}=-\left(2\sqrt{3}-\sqrt{3}\sqrt{2}\sqrt{3}\right)
Faktor: 6=3\times 2. \sqrt{3\times 2} koʻpaytmasining kvadrat ildizini \sqrt{3}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
\frac{6}{6t}=-\left(2\sqrt{3}-3\sqrt{2}\right)
3 hosil qilish uchun \sqrt{3} va \sqrt{3} ni ko'paytirish.
\frac{6}{6t}=-2\sqrt{3}+3\sqrt{2}
2\sqrt{3}-3\sqrt{2} teskarisini topish uchun har birining teskarisini toping.
6=-2\sqrt{3}\times 6t+3\sqrt{2}\times 6t
t qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 6t ga ko'paytirish.
6=3\times 6\sqrt{2}t-2\times 6\sqrt{3}t
Shartlarni qayta saralash.
6=18\sqrt{2}t-12\sqrt{3}t
Ko‘paytirishlarni bajaring.
18\sqrt{2}t-12\sqrt{3}t=6
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\left(18\sqrt{2}-12\sqrt{3}\right)t=6
t'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(18\sqrt{2}-12\sqrt{3}\right)t}{18\sqrt{2}-12\sqrt{3}}=\frac{6}{18\sqrt{2}-12\sqrt{3}}
Ikki tarafini 18\sqrt{2}-12\sqrt{3} ga bo‘ling.
t=\frac{6}{18\sqrt{2}-12\sqrt{3}}
18\sqrt{2}-12\sqrt{3} ga bo'lish 18\sqrt{2}-12\sqrt{3} ga ko'paytirishni bekor qiladi.
t=\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{3}
6 ni 18\sqrt{2}-12\sqrt{3} ga bo'lish.