Baholash
\frac{1}{4}=0,25
Omil
\frac{1}{2 ^ {2}} = 0,25
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{4\times 4}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{\sqrt{6}+\sqrt{2}}{4} ni \frac{\sqrt{6}-\sqrt{2}}{4} ga ko‘paytiring.
\frac{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}{4\times 4}
Hisoblang: \left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6-\left(\sqrt{2}\right)^{2}}{4\times 4}
\sqrt{6} kvadrati – 6.
\frac{6-2}{4\times 4}
\sqrt{2} kvadrati – 2.
\frac{4}{4\times 4}
4 olish uchun 6 dan 2 ni ayirish.
\frac{4}{16}
16 hosil qilish uchun 4 va 4 ni ko'paytirish.
\frac{1}{4}
\frac{4}{16} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}