Baholash
1
Omil
1
Viktorina
Arithmetic
5xshash muammolar:
\frac { \sqrt { 5 } + 1 } { 2 } \cdot \frac { \sqrt { 5 } - 1 } { 2 }
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}{2\times 2}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{\sqrt{5}+1}{2} ni \frac{\sqrt{5}-1}{2} ga ko‘paytiring.
\frac{\left(\sqrt{5}\right)^{2}-1^{2}}{2\times 2}
Hisoblang: \left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5-1^{2}}{2\times 2}
\sqrt{5} kvadrati – 5.
\frac{5-1}{2\times 2}
2 daraja ko‘rsatkichini 1 ga hisoblang va 1 ni qiymatni oling.
\frac{4}{2\times 2}
4 olish uchun 5 dan 1 ni ayirish.
\frac{4}{4}
4 hosil qilish uchun 2 va 2 ni ko'paytirish.
1
1 ni olish uchun 4 ni 4 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}