Tasdiqlamoq
toʻgʻri
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} maxrajini \sqrt{5}+\sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Hisoblang: \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
\sqrt{5} kvadratini chiqarish. \sqrt{3} kvadratini chiqarish.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
2 olish uchun 5 dan 3 ni ayirish.
\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
\left(\sqrt{5}+\sqrt{3}\right)^{2} hosil qilish uchun \sqrt{5}+\sqrt{3} va \sqrt{5}+\sqrt{3} ni ko'paytirish.
\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{5}+\sqrt{3}\right)^{2} kengaytirilishi uchun ishlating.
\frac{5+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
\sqrt{5} kvadrati – 5.
\frac{5+2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
\sqrt{5} va \sqrt{3} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
\frac{5+2\sqrt{15}+3}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
\sqrt{3} kvadrati – 3.
\frac{8+2\sqrt{15}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
8 olish uchun 5 va 3'ni qo'shing.
4+\sqrt{15}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
4+\sqrt{15} natijani olish uchun 8+2\sqrt{15} ning har bir ifodasini 2 ga bo‘ling.
4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}=2\sqrt{15}
\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} maxrajini \sqrt{5}-\sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}=2\sqrt{15}
Hisoblang: \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5-3}=2\sqrt{15}
\sqrt{5} kvadratini chiqarish. \sqrt{3} kvadratini chiqarish.
4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}=2\sqrt{15}
2 olish uchun 5 dan 3 ni ayirish.
4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{2}=2\sqrt{15}
\left(\sqrt{5}-\sqrt{3}\right)^{2} hosil qilish uchun \sqrt{5}-\sqrt{3} va \sqrt{5}-\sqrt{3} ni ko'paytirish.
4+\sqrt{15}-\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}=2\sqrt{15}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{5}-\sqrt{3}\right)^{2} kengaytirilishi uchun ishlating.
4+\sqrt{15}-\frac{5-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}=2\sqrt{15}
\sqrt{5} kvadrati – 5.
4+\sqrt{15}-\frac{5-2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2}=2\sqrt{15}
\sqrt{5} va \sqrt{3} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
4+\sqrt{15}-\frac{5-2\sqrt{15}+3}{2}=2\sqrt{15}
\sqrt{3} kvadrati – 3.
4+\sqrt{15}-\frac{8-2\sqrt{15}}{2}=2\sqrt{15}
8 olish uchun 5 va 3'ni qo'shing.
4+\sqrt{15}-\left(4-\sqrt{15}\right)=2\sqrt{15}
4-\sqrt{15} natijani olish uchun 8-2\sqrt{15} ning har bir ifodasini 2 ga bo‘ling.
4+\sqrt{15}-4-\left(-\sqrt{15}\right)=2\sqrt{15}
4-\sqrt{15} teskarisini topish uchun har birining teskarisini toping.
4+\sqrt{15}-4+\sqrt{15}=2\sqrt{15}
-\sqrt{15} ning teskarisi \sqrt{15} ga teng.
\sqrt{15}+\sqrt{15}=2\sqrt{15}
0 olish uchun 4 dan 4 ni ayirish.
2\sqrt{15}=2\sqrt{15}
2\sqrt{15} ni olish uchun \sqrt{15} va \sqrt{15} ni birlashtirish.
2\sqrt{15}-2\sqrt{15}=0
Ikkala tarafdan 2\sqrt{15} ni ayirish.
0=0
0 ni olish uchun 2\sqrt{15} va -2\sqrt{15} ni birlashtirish.
\text{true}
0 va 0 ni taqqoslang.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}