Baholash
1
Omil
1
Baham ko'rish
Klipbordga nusxa olish
\frac{4\sqrt{3}}{\sqrt{64}}\times \frac{2}{\sqrt{3}}
Faktor: 48=4^{2}\times 3. \sqrt{4^{2}\times 3} koʻpaytmasining kvadrat ildizini \sqrt{4^{2}}\sqrt{3} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 4^{2} ning kvadrat ildizini chiqarish.
\frac{4\sqrt{3}}{8}\times \frac{2}{\sqrt{3}}
64 ning kvadrat ildizini hisoblab, 8 natijaga ega bo‘ling.
\frac{1}{2}\sqrt{3}\times \frac{2}{\sqrt{3}}
\frac{1}{2}\sqrt{3} ni olish uchun 4\sqrt{3} ni 8 ga bo‘ling.
\frac{1}{2}\sqrt{3}\times \frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
\frac{2}{\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{1}{2}\sqrt{3}\times \frac{2\sqrt{3}}{3}
\sqrt{3} kvadrati – 3.
\frac{2\sqrt{3}}{2\times 3}\sqrt{3}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{2} ni \frac{2\sqrt{3}}{3} ga ko‘paytiring.
\frac{\sqrt{3}}{3}\sqrt{3}
Surat va maxrajdagi ikkala 2 ni qisqartiring.
\frac{\sqrt{3}\sqrt{3}}{3}
\frac{\sqrt{3}}{3}\sqrt{3} ni yagona kasrga aylantiring.
\frac{3}{3}
3 hosil qilish uchun \sqrt{3} va \sqrt{3} ni ko'paytirish.
1
1 ni olish uchun 3 ni 3 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}