a uchun yechish (complex solution)
\left\{\begin{matrix}\\a=\frac{17}{243}\approx 0,069958848\text{, }&\text{unconditionally}\\a\neq 0\text{, }&b=0\end{matrix}\right,
b uchun yechish (complex solution)
\left\{\begin{matrix}b=0\text{, }&a\neq 0\\b\neq 0\text{, }&a=\frac{17}{243}\end{matrix}\right,
a uchun yechish
\left\{\begin{matrix}a=\frac{17}{243}\approx 0,069958848\text{, }&b\geq 0\\a>0\text{, }&b=0\end{matrix}\right,
b uchun yechish
\left\{\begin{matrix}b=0\text{, }&a>0\\b\geq 0\text{, }&a=\frac{17}{243}\end{matrix}\right,
Baham ko'rish
Klipbordga nusxa olish
\left(\frac{\sqrt{34ab}}{\sqrt{6a}}\right)^{2}=\left(9\sqrt{ab}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=\left(9\sqrt{ab}\right)^{2}
\frac{\sqrt{34ab}}{\sqrt{6a}}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=9^{2}\left(\sqrt{ab}\right)^{2}
\left(9\sqrt{ab}\right)^{2} ni kengaytirish.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=81\left(\sqrt{ab}\right)^{2}
2 daraja ko‘rsatkichini 9 ga hisoblang va 81 ni qiymatni oling.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=81ab
2 daraja ko‘rsatkichini \sqrt{ab} ga hisoblang va ab ni qiymatni oling.
\frac{34ab}{\left(\sqrt{6a}\right)^{2}}=81ab
2 daraja ko‘rsatkichini \sqrt{34ab} ga hisoblang va 34ab ni qiymatni oling.
\frac{34ab}{6a}=81ab
2 daraja ko‘rsatkichini \sqrt{6a} ga hisoblang va 6a ni qiymatni oling.
\frac{17b}{3}=81ab
Surat va maxrajdagi ikkala 2a ni qisqartiring.
17b=243ab
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
243ab=17b
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
243ba=17b
Tenglama standart shaklda.
\frac{243ba}{243b}=\frac{17b}{243b}
Ikki tarafini 243b ga bo‘ling.
a=\frac{17b}{243b}
243b ga bo'lish 243b ga ko'paytirishni bekor qiladi.
a=\frac{17}{243}
17b ni 243b ga bo'lish.
\frac{\sqrt{34\times \frac{17}{243}b}}{\sqrt{6\times \frac{17}{243}}}=9\sqrt{\frac{17}{243}b}
\frac{\sqrt{34ab}}{\sqrt{6a}}=9\sqrt{ab} tenglamasida a uchun \frac{17}{243} ni almashtiring.
\frac{1}{3}b^{\frac{1}{2}}\times 51^{\frac{1}{2}}=\frac{1}{3}b^{\frac{1}{2}}\times 51^{\frac{1}{2}}
Qisqartirish. a=\frac{17}{243} tenglamani qoniqtiradi.
a=\frac{17}{243}
\frac{\sqrt{34ab}}{\sqrt{6a}}=9\sqrt{ab} tenglamasi noyob yechimga ega.
\left(\frac{\sqrt{34ab}}{\sqrt{6a}}\right)^{2}=\left(9\sqrt{ab}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=\left(9\sqrt{ab}\right)^{2}
\frac{\sqrt{34ab}}{\sqrt{6a}}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=9^{2}\left(\sqrt{ab}\right)^{2}
\left(9\sqrt{ab}\right)^{2} ni kengaytirish.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=81\left(\sqrt{ab}\right)^{2}
2 daraja ko‘rsatkichini 9 ga hisoblang va 81 ni qiymatni oling.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=81ab
2 daraja ko‘rsatkichini \sqrt{ab} ga hisoblang va ab ni qiymatni oling.
\frac{34ab}{\left(\sqrt{6a}\right)^{2}}=81ab
2 daraja ko‘rsatkichini \sqrt{34ab} ga hisoblang va 34ab ni qiymatni oling.
\frac{34ab}{6a}=81ab
2 daraja ko‘rsatkichini \sqrt{6a} ga hisoblang va 6a ni qiymatni oling.
\frac{17b}{3}=81ab
Surat va maxrajdagi ikkala 2a ni qisqartiring.
17b=243ab
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
17b-243ab=0
Ikkala tarafdan 243ab ni ayirish.
\left(17-243a\right)b=0
b'ga ega bo'lgan barcha shartlarni birlashtirish.
b=0
0 ni 17-243a ga bo'lish.
\frac{\sqrt{34a\times 0}}{\sqrt{6a}}=9\sqrt{a\times 0}
\frac{\sqrt{34ab}}{\sqrt{6a}}=9\sqrt{ab} tenglamasida b uchun 0 ni almashtiring.
0=0
Qisqartirish. b=0 tenglamani qoniqtiradi.
b=0
\frac{\sqrt{34ab}}{\sqrt{6a}}=9\sqrt{ab} tenglamasi noyob yechimga ega.
\left(\frac{\sqrt{34ab}}{\sqrt{6a}}\right)^{2}=\left(9\sqrt{ab}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=\left(9\sqrt{ab}\right)^{2}
\frac{\sqrt{34ab}}{\sqrt{6a}}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=9^{2}\left(\sqrt{ab}\right)^{2}
\left(9\sqrt{ab}\right)^{2} ni kengaytirish.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=81\left(\sqrt{ab}\right)^{2}
2 daraja ko‘rsatkichini 9 ga hisoblang va 81 ni qiymatni oling.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=81ab
2 daraja ko‘rsatkichini \sqrt{ab} ga hisoblang va ab ni qiymatni oling.
\frac{34ab}{\left(\sqrt{6a}\right)^{2}}=81ab
2 daraja ko‘rsatkichini \sqrt{34ab} ga hisoblang va 34ab ni qiymatni oling.
\frac{34ab}{6a}=81ab
2 daraja ko‘rsatkichini \sqrt{6a} ga hisoblang va 6a ni qiymatni oling.
\frac{17b}{3}=81ab
Surat va maxrajdagi ikkala 2a ni qisqartiring.
17b=243ab
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
243ab=17b
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
243ba=17b
Tenglama standart shaklda.
\frac{243ba}{243b}=\frac{17b}{243b}
Ikki tarafini 243b ga bo‘ling.
a=\frac{17b}{243b}
243b ga bo'lish 243b ga ko'paytirishni bekor qiladi.
a=\frac{17}{243}
17b ni 243b ga bo'lish.
\frac{\sqrt{34\times \frac{17}{243}b}}{\sqrt{6\times \frac{17}{243}}}=9\sqrt{\frac{17}{243}b}
\frac{\sqrt{34ab}}{\sqrt{6a}}=9\sqrt{ab} tenglamasida a uchun \frac{17}{243} ni almashtiring.
\frac{1}{3}b^{\frac{1}{2}}\times 51^{\frac{1}{2}}=\frac{1}{3}b^{\frac{1}{2}}\times 51^{\frac{1}{2}}
Qisqartirish. a=\frac{17}{243} tenglamani qoniqtiradi.
a=\frac{17}{243}
\frac{\sqrt{34ab}}{\sqrt{6a}}=9\sqrt{ab} tenglamasi noyob yechimga ega.
\left(\frac{\sqrt{34ab}}{\sqrt{6a}}\right)^{2}=\left(9\sqrt{ab}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=\left(9\sqrt{ab}\right)^{2}
\frac{\sqrt{34ab}}{\sqrt{6a}}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=9^{2}\left(\sqrt{ab}\right)^{2}
\left(9\sqrt{ab}\right)^{2} ni kengaytirish.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=81\left(\sqrt{ab}\right)^{2}
2 daraja ko‘rsatkichini 9 ga hisoblang va 81 ni qiymatni oling.
\frac{\left(\sqrt{34ab}\right)^{2}}{\left(\sqrt{6a}\right)^{2}}=81ab
2 daraja ko‘rsatkichini \sqrt{ab} ga hisoblang va ab ni qiymatni oling.
\frac{34ab}{\left(\sqrt{6a}\right)^{2}}=81ab
2 daraja ko‘rsatkichini \sqrt{34ab} ga hisoblang va 34ab ni qiymatni oling.
\frac{34ab}{6a}=81ab
2 daraja ko‘rsatkichini \sqrt{6a} ga hisoblang va 6a ni qiymatni oling.
\frac{17b}{3}=81ab
Surat va maxrajdagi ikkala 2a ni qisqartiring.
17b=243ab
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
17b-243ab=0
Ikkala tarafdan 243ab ni ayirish.
\left(17-243a\right)b=0
b'ga ega bo'lgan barcha shartlarni birlashtirish.
b=0
0 ni 17-243a ga bo'lish.
\frac{\sqrt{34a\times 0}}{\sqrt{6a}}=9\sqrt{a\times 0}
\frac{\sqrt{34ab}}{\sqrt{6a}}=9\sqrt{ab} tenglamasida b uchun 0 ni almashtiring.
0=0
Qisqartirish. b=0 tenglamani qoniqtiradi.
b=0
\frac{\sqrt{34ab}}{\sqrt{6a}}=9\sqrt{ab} tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}