Asosiy tarkibga oʻtish
b uchun yechish
Tick mark Image
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=a+b\sqrt{3}
\frac{\sqrt{3}-1}{\sqrt{3}+1} maxrajini \sqrt{3}-1 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}=a+b\sqrt{3}
Hisoblang: \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{3-1}=a+b\sqrt{3}
\sqrt{3} kvadratini chiqarish. 1 kvadratini chiqarish.
\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{2}=a+b\sqrt{3}
2 olish uchun 3 dan 1 ni ayirish.
\frac{\left(\sqrt{3}-1\right)^{2}}{2}=a+b\sqrt{3}
\left(\sqrt{3}-1\right)^{2} hosil qilish uchun \sqrt{3}-1 va \sqrt{3}-1 ni ko'paytirish.
\frac{\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1}{2}=a+b\sqrt{3}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{3}-1\right)^{2} kengaytirilishi uchun ishlating.
\frac{3-2\sqrt{3}+1}{2}=a+b\sqrt{3}
\sqrt{3} kvadrati – 3.
\frac{4-2\sqrt{3}}{2}=a+b\sqrt{3}
4 olish uchun 3 va 1'ni qo'shing.
2-\sqrt{3}=a+b\sqrt{3}
2-\sqrt{3} natijani olish uchun 4-2\sqrt{3} ning har bir ifodasini 2 ga bo‘ling.
a+b\sqrt{3}=2-\sqrt{3}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
b\sqrt{3}=2-\sqrt{3}-a
Ikkala tarafdan a ni ayirish.
\sqrt{3}b=-a+2-\sqrt{3}
Tenglama standart shaklda.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-a+2-\sqrt{3}}{\sqrt{3}}
Ikki tarafini \sqrt{3} ga bo‘ling.
b=\frac{-a+2-\sqrt{3}}{\sqrt{3}}
\sqrt{3} ga bo'lish \sqrt{3} ga ko'paytirishni bekor qiladi.
b=\frac{\sqrt{3}\left(-a+2-\sqrt{3}\right)}{3}
-\sqrt{3}-a+2 ni \sqrt{3} ga bo'lish.