Asosiy tarkibga oʻtish
b uchun yechish
Tick mark Image
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}=a+b\sqrt{3}
\frac{\sqrt{3}+2}{\sqrt{3}-2} maxrajini \sqrt{3}+2 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}\right)^{2}-2^{2}}=a+b\sqrt{3}
Hisoblang: \left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{3-4}=a+b\sqrt{3}
\sqrt{3} kvadratini chiqarish. 2 kvadratini chiqarish.
\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{-1}=a+b\sqrt{3}
-1 olish uchun 3 dan 4 ni ayirish.
\frac{\left(\sqrt{3}+2\right)^{2}}{-1}=a+b\sqrt{3}
\left(\sqrt{3}+2\right)^{2} hosil qilish uchun \sqrt{3}+2 va \sqrt{3}+2 ni ko'paytirish.
\frac{\left(\sqrt{3}\right)^{2}+4\sqrt{3}+4}{-1}=a+b\sqrt{3}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{3}+2\right)^{2} kengaytirilishi uchun ishlating.
\frac{3+4\sqrt{3}+4}{-1}=a+b\sqrt{3}
\sqrt{3} kvadrati – 3.
\frac{7+4\sqrt{3}}{-1}=a+b\sqrt{3}
7 olish uchun 3 va 4'ni qo'shing.
-7-4\sqrt{3}=a+b\sqrt{3}
Istalgan sonni -1 ga boʻlsangiz, uning qarama-qarshisi chiqadi. 7+4\sqrt{3} teskarisini topish uchun har birining teskarisini toping.
a+b\sqrt{3}=-7-4\sqrt{3}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
b\sqrt{3}=-7-4\sqrt{3}-a
Ikkala tarafdan a ni ayirish.
\sqrt{3}b=-a-4\sqrt{3}-7
Tenglama standart shaklda.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-a-4\sqrt{3}-7}{\sqrt{3}}
Ikki tarafini \sqrt{3} ga bo‘ling.
b=\frac{-a-4\sqrt{3}-7}{\sqrt{3}}
\sqrt{3} ga bo'lish \sqrt{3} ga ko'paytirishni bekor qiladi.
b=-\frac{\sqrt{3}\left(a+4\sqrt{3}+7\right)}{3}
-4\sqrt{3}-7-a ni \sqrt{3} ga bo'lish.