Baholash
\frac{\sqrt{2}+4}{7}\approx 0,77345908
Baham ko'rish
Klipbordga nusxa olish
\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)}
\frac{\sqrt{2}}{2\sqrt{2}-1} maxrajini 2\sqrt{2}+1 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{\left(2\sqrt{2}\right)^{2}-1^{2}}
Hisoblang: \left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{2^{2}\left(\sqrt{2}\right)^{2}-1^{2}}
\left(2\sqrt{2}\right)^{2} ni kengaytirish.
\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{4\left(\sqrt{2}\right)^{2}-1^{2}}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{4\times 2-1^{2}}
\sqrt{2} kvadrati – 2.
\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{8-1^{2}}
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{8-1}
2 daraja ko‘rsatkichini 1 ga hisoblang va 1 ni qiymatni oling.
\frac{\sqrt{2}\left(2\sqrt{2}+1\right)}{7}
7 olish uchun 8 dan 1 ni ayirish.
\frac{2\left(\sqrt{2}\right)^{2}+\sqrt{2}}{7}
\sqrt{2} ga 2\sqrt{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{2\times 2+\sqrt{2}}{7}
\sqrt{2} kvadrati – 2.
\frac{4+\sqrt{2}}{7}
4 hosil qilish uchun 2 va 2 ni ko'paytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}