Baholash
\sqrt{6}+3\approx 5,449489743
Viktorina
Arithmetic
5xshash muammolar:
\frac { \sqrt { 18 } - \sqrt { 12 } } { \sqrt { 50 } - \sqrt { 48 } }
Baham ko'rish
Klipbordga nusxa olish
\frac{3\sqrt{2}-\sqrt{12}}{\sqrt{50}-\sqrt{48}}
Faktor: 18=3^{2}\times 2. \sqrt{3^{2}\times 2} koʻpaytmasining kvadrat ildizini \sqrt{3^{2}}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 3^{2} ning kvadrat ildizini chiqarish.
\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{50}-\sqrt{48}}
Faktor: 12=2^{2}\times 3. \sqrt{2^{2}\times 3} koʻpaytmasining kvadrat ildizini \sqrt{2^{2}}\sqrt{3} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 2^{2} ning kvadrat ildizini chiqarish.
\frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-\sqrt{48}}
Faktor: 50=5^{2}\times 2. \sqrt{5^{2}\times 2} koʻpaytmasining kvadrat ildizini \sqrt{5^{2}}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 5^{2} ning kvadrat ildizini chiqarish.
\frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-4\sqrt{3}}
Faktor: 48=4^{2}\times 3. \sqrt{4^{2}\times 3} koʻpaytmasining kvadrat ildizini \sqrt{4^{2}}\sqrt{3} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 4^{2} ning kvadrat ildizini chiqarish.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{\left(5\sqrt{2}-4\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}
\frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-4\sqrt{3}} maxrajini 5\sqrt{2}+4\sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{\left(5\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
Hisoblang: \left(5\sqrt{2}-4\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{5^{2}\left(\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
\left(5\sqrt{2}\right)^{2} ni kengaytirish.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{25\left(\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
2 daraja ko‘rsatkichini 5 ga hisoblang va 25 ni qiymatni oling.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{25\times 2-\left(-4\sqrt{3}\right)^{2}}
\sqrt{2} kvadrati – 2.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-\left(-4\sqrt{3}\right)^{2}}
50 hosil qilish uchun 25 va 2 ni ko'paytirish.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-\left(-4\right)^{2}\left(\sqrt{3}\right)^{2}}
\left(-4\sqrt{3}\right)^{2} ni kengaytirish.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-16\left(\sqrt{3}\right)^{2}}
2 daraja ko‘rsatkichini -4 ga hisoblang va 16 ni qiymatni oling.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-16\times 3}
\sqrt{3} kvadrati – 3.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-48}
48 hosil qilish uchun 16 va 3 ni ko'paytirish.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{2}
2 olish uchun 50 dan 48 ni ayirish.
\frac{15\left(\sqrt{2}\right)^{2}+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
3\sqrt{2}-2\sqrt{3} ifodaning har bir elementini 5\sqrt{2}+4\sqrt{3} ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{15\times 2+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
\sqrt{2} kvadrati – 2.
\frac{30+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
30 hosil qilish uchun 15 va 2 ni ko'paytirish.
\frac{30+12\sqrt{6}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
\sqrt{3} va \sqrt{2} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
\frac{30+12\sqrt{6}-10\sqrt{6}-8\left(\sqrt{3}\right)^{2}}{2}
\sqrt{3} va \sqrt{2} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
\frac{30+2\sqrt{6}-8\left(\sqrt{3}\right)^{2}}{2}
2\sqrt{6} ni olish uchun 12\sqrt{6} va -10\sqrt{6} ni birlashtirish.
\frac{30+2\sqrt{6}-8\times 3}{2}
\sqrt{3} kvadrati – 3.
\frac{30+2\sqrt{6}-24}{2}
-24 hosil qilish uchun -8 va 3 ni ko'paytirish.
\frac{6+2\sqrt{6}}{2}
6 olish uchun 30 dan 24 ni ayirish.
3+\sqrt{6}
3+\sqrt{6} natijani olish uchun 6+2\sqrt{6} ning har bir ifodasini 2 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}