Baholash
\sqrt{2}+2\approx 3,414213562
Baham ko'rish
Klipbordga nusxa olish
\frac{2\sqrt{3}+\sqrt{6}+\sqrt{2}+2}{\sqrt{3}+1}
Faktor: 12=2^{2}\times 3. \sqrt{2^{2}\times 3} koʻpaytmasining kvadrat ildizini \sqrt{2^{2}}\sqrt{3} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 2^{2} ning kvadrat ildizini chiqarish.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
\frac{2\sqrt{3}+\sqrt{6}+\sqrt{2}+2}{\sqrt{3}+1} maxrajini \sqrt{3}-1 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Hisoblang: \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{3-1}
\sqrt{3} kvadratini chiqarish. 1 kvadratini chiqarish.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{2}
2 olish uchun 3 dan 1 ni ayirish.
\frac{2\left(\sqrt{3}\right)^{2}-2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
2\sqrt{3}+\sqrt{6}+\sqrt{2}+2 ifodaning har bir elementini \sqrt{3}-1 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{2\times 3-2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
\sqrt{3} kvadrati – 3.
\frac{6-2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
6 hosil qilish uchun 2 va 3 ni ko'paytirish.
\frac{6-2\sqrt{3}+\sqrt{3}\sqrt{2}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Faktor: 6=3\times 2. \sqrt{3\times 2} koʻpaytmasining kvadrat ildizini \sqrt{3}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
\frac{6-2\sqrt{3}+3\sqrt{2}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
3 hosil qilish uchun \sqrt{3} va \sqrt{3} ni ko'paytirish.
\frac{6-2\sqrt{3}+3\sqrt{2}-\sqrt{6}+\sqrt{6}-\sqrt{2}+2\sqrt{3}-2}{2}
\sqrt{2} va \sqrt{3} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
\frac{6-2\sqrt{3}+3\sqrt{2}-\sqrt{2}+2\sqrt{3}-2}{2}
0 ni olish uchun -\sqrt{6} va \sqrt{6} ni birlashtirish.
\frac{6-2\sqrt{3}+2\sqrt{2}+2\sqrt{3}-2}{2}
2\sqrt{2} ni olish uchun 3\sqrt{2} va -\sqrt{2} ni birlashtirish.
\frac{6+2\sqrt{2}-2}{2}
0 ni olish uchun -2\sqrt{3} va 2\sqrt{3} ni birlashtirish.
\frac{4+2\sqrt{2}}{2}
4 olish uchun 6 dan 2 ni ayirish.
2+\sqrt{2}
2+\sqrt{2} natijani olish uchun 4+2\sqrt{2} ning har bir ifodasini 2 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}