Baholash
\text{Indeterminate}
Baham ko'rish
Klipbordga nusxa olish
\frac{\sqrt{-36}\left(\sqrt{-2}r+9\right)}{\left(\sqrt{-2}r-9\right)\left(\sqrt{-2}r+9\right)}
\frac{\sqrt{-36}}{\sqrt{-2}r-9} maxrajini \sqrt{-2}r+9 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\sqrt{-36}\left(\sqrt{-2}r+9\right)}{\left(\sqrt{-2}r\right)^{2}-9^{2}}
Hisoblang: \left(\sqrt{-2}r-9\right)\left(\sqrt{-2}r+9\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{-36}\left(\sqrt{-2}r+9\right)}{\left(\sqrt{-2}\right)^{2}r^{2}-9^{2}}
\left(\sqrt{-2}r\right)^{2} ni kengaytirish.
\frac{\sqrt{-36}\left(\sqrt{-2}r+9\right)}{-2r^{2}-9^{2}}
2 daraja ko‘rsatkichini \sqrt{-2} ga hisoblang va -2 ni qiymatni oling.
\frac{\sqrt{-36}\left(\sqrt{-2}r+9\right)}{-2r^{2}-81}
2 daraja ko‘rsatkichini 9 ga hisoblang va 81 ni qiymatni oling.
\frac{\sqrt{-36}\sqrt{-2}r+9\sqrt{-36}}{-2r^{2}-81}
\sqrt{-36} ga \sqrt{-2}r+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}