Baholash
\text{Indeterminate}
Baholash (complex solution)
\frac{-2\sqrt{2}i+1}{3}\approx 0,333333333-0,942809042i
Ashyoviy qism (complex solution)
\frac{1}{3} = 0,3333333333333333
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{\left(\sqrt{-2}-1\right)\left(\sqrt{-2}+1\right)}
\frac{\sqrt{-2}+1}{\sqrt{-2}-1} maxrajini \sqrt{-2}+1 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{\left(\sqrt{-2}\right)^{2}-1^{2}}
Hisoblang: \left(\sqrt{-2}-1\right)\left(\sqrt{-2}+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{-2-1}
\sqrt{-2} kvadratini chiqarish. 1 kvadratini chiqarish.
\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{-3}
-3 olish uchun -2 dan 1 ni ayirish.
\frac{\left(\sqrt{-2}+1\right)^{2}}{-3}
\left(\sqrt{-2}+1\right)^{2} hosil qilish uchun \sqrt{-2}+1 va \sqrt{-2}+1 ni ko'paytirish.
\frac{\left(\sqrt{-2}\right)^{2}+2\sqrt{-2}+1}{-3}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{-2}+1\right)^{2} kengaytirilishi uchun ishlating.
\frac{-2+2\sqrt{-2}+1}{-3}
2 daraja ko‘rsatkichini \sqrt{-2} ga hisoblang va -2 ni qiymatni oling.
\frac{-1+2\sqrt{-2}}{-3}
-1 olish uchun -2 va 1'ni qo'shing.
\frac{1-2\sqrt{-2}}{3}
Surat va maxrajini -1 ga ko‘paytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}