Baholash
-\frac{24}{x^{2}-144}
Kengaytirish
-\frac{24}{x^{2}-144}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{\frac{x-11}{x^{2}-144}}{\frac{x-12}{x-12}+\frac{1}{x-12}}-\frac{1}{x-12}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{x-12}{x-12} marotabaga ko'paytirish.
\frac{\frac{x-11}{x^{2}-144}}{\frac{x-12+1}{x-12}}-\frac{1}{x-12}
\frac{x-12}{x-12} va \frac{1}{x-12} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{x-11}{x^{2}-144}}{\frac{x-11}{x-12}}-\frac{1}{x-12}
x-12+1 kabi iboralarga o‘xshab birlashtiring.
\frac{\left(x-11\right)\left(x-12\right)}{\left(x^{2}-144\right)\left(x-11\right)}-\frac{1}{x-12}
\frac{x-11}{x^{2}-144} ni \frac{x-11}{x-12} ga bo'lish \frac{x-11}{x^{2}-144} ga k'paytirish \frac{x-11}{x-12} ga qaytarish.
\frac{x-12}{x^{2}-144}-\frac{1}{x-12}
Surat va maxrajdagi ikkala x-11 ni qisqartiring.
\frac{x-12}{\left(x-12\right)\left(x+12\right)}-\frac{1}{x-12}
\frac{x-12}{x^{2}-144} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{1}{x+12}-\frac{1}{x-12}
Surat va maxrajdagi ikkala x-12 ni qisqartiring.
\frac{x-12}{\left(x-12\right)\left(x+12\right)}-\frac{x+12}{\left(x-12\right)\left(x+12\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x+12 va x-12 ning eng kichik umumiy karralisi \left(x-12\right)\left(x+12\right). \frac{1}{x+12} ni \frac{x-12}{x-12} marotabaga ko'paytirish. \frac{1}{x-12} ni \frac{x+12}{x+12} marotabaga ko'paytirish.
\frac{x-12-\left(x+12\right)}{\left(x-12\right)\left(x+12\right)}
\frac{x-12}{\left(x-12\right)\left(x+12\right)} va \frac{x+12}{\left(x-12\right)\left(x+12\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x-12-x-12}{\left(x-12\right)\left(x+12\right)}
x-12-\left(x+12\right) ichidagi ko‘paytirishlarni bajaring.
\frac{-24}{\left(x-12\right)\left(x+12\right)}
x-12-x-12 kabi iboralarga o‘xshab birlashtiring.
\frac{-24}{x^{2}-144}
\left(x-12\right)\left(x+12\right) ni kengaytirish.
\frac{\frac{x-11}{x^{2}-144}}{\frac{x-12}{x-12}+\frac{1}{x-12}}-\frac{1}{x-12}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{x-12}{x-12} marotabaga ko'paytirish.
\frac{\frac{x-11}{x^{2}-144}}{\frac{x-12+1}{x-12}}-\frac{1}{x-12}
\frac{x-12}{x-12} va \frac{1}{x-12} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{x-11}{x^{2}-144}}{\frac{x-11}{x-12}}-\frac{1}{x-12}
x-12+1 kabi iboralarga o‘xshab birlashtiring.
\frac{\left(x-11\right)\left(x-12\right)}{\left(x^{2}-144\right)\left(x-11\right)}-\frac{1}{x-12}
\frac{x-11}{x^{2}-144} ni \frac{x-11}{x-12} ga bo'lish \frac{x-11}{x^{2}-144} ga k'paytirish \frac{x-11}{x-12} ga qaytarish.
\frac{x-12}{x^{2}-144}-\frac{1}{x-12}
Surat va maxrajdagi ikkala x-11 ni qisqartiring.
\frac{x-12}{\left(x-12\right)\left(x+12\right)}-\frac{1}{x-12}
\frac{x-12}{x^{2}-144} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{1}{x+12}-\frac{1}{x-12}
Surat va maxrajdagi ikkala x-12 ni qisqartiring.
\frac{x-12}{\left(x-12\right)\left(x+12\right)}-\frac{x+12}{\left(x-12\right)\left(x+12\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x+12 va x-12 ning eng kichik umumiy karralisi \left(x-12\right)\left(x+12\right). \frac{1}{x+12} ni \frac{x-12}{x-12} marotabaga ko'paytirish. \frac{1}{x-12} ni \frac{x+12}{x+12} marotabaga ko'paytirish.
\frac{x-12-\left(x+12\right)}{\left(x-12\right)\left(x+12\right)}
\frac{x-12}{\left(x-12\right)\left(x+12\right)} va \frac{x+12}{\left(x-12\right)\left(x+12\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x-12-x-12}{\left(x-12\right)\left(x+12\right)}
x-12-\left(x+12\right) ichidagi ko‘paytirishlarni bajaring.
\frac{-24}{\left(x-12\right)\left(x+12\right)}
x-12-x-12 kabi iboralarga o‘xshab birlashtiring.
\frac{-24}{x^{2}-144}
\left(x-12\right)\left(x+12\right) ni kengaytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}