Baholash
\frac{x}{6x+25}
x ga nisbatan hosilani topish
\frac{25}{\left(6x+25\right)^{2}}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{\frac{x}{x+5}}{\frac{x}{x+5}+\frac{5\left(x+5\right)}{x+5}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 5 ni \frac{x+5}{x+5} marotabaga ko'paytirish.
\frac{\frac{x}{x+5}}{\frac{x+5\left(x+5\right)}{x+5}}
\frac{x}{x+5} va \frac{5\left(x+5\right)}{x+5} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{x}{x+5}}{\frac{x+5x+25}{x+5}}
x+5\left(x+5\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{x}{x+5}}{\frac{6x+25}{x+5}}
x+5x+25 kabi iboralarga o‘xshab birlashtiring.
\frac{x\left(x+5\right)}{\left(x+5\right)\left(6x+25\right)}
\frac{x}{x+5} ni \frac{6x+25}{x+5} ga bo'lish \frac{x}{x+5} ga k'paytirish \frac{6x+25}{x+5} ga qaytarish.
\frac{x}{6x+25}
Surat va maxrajdagi ikkala x+5 ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{x}{x+5}+\frac{5\left(x+5\right)}{x+5}})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 5 ni \frac{x+5}{x+5} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{x+5\left(x+5\right)}{x+5}})
\frac{x}{x+5} va \frac{5\left(x+5\right)}{x+5} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{x+5x+25}{x+5}})
x+5\left(x+5\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x+5}}{\frac{6x+25}{x+5}})
x+5x+25 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+5\right)}{\left(x+5\right)\left(6x+25\right)})
\frac{x}{x+5} ni \frac{6x+25}{x+5} ga bo'lish \frac{x}{x+5} ga k'paytirish \frac{6x+25}{x+5} ga qaytarish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{6x+25})
Surat va maxrajdagi ikkala x+5 ni qisqartiring.
\frac{\left(6x^{1}+25\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(6x^{1}+25)}{\left(6x^{1}+25\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(6x^{1}+25\right)x^{1-1}-x^{1}\times 6x^{1-1}}{\left(6x^{1}+25\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(6x^{1}+25\right)x^{0}-x^{1}\times 6x^{0}}{\left(6x^{1}+25\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{6x^{1}x^{0}+25x^{0}-x^{1}\times 6x^{0}}{\left(6x^{1}+25\right)^{2}}
Distributiv xususiyatdan foydalanib kengaytirish.
\frac{6x^{1}+25x^{0}-6x^{1}}{\left(6x^{1}+25\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{\left(6-6\right)x^{1}+25x^{0}}{\left(6x^{1}+25\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{25x^{0}}{\left(6x^{1}+25\right)^{2}}
6 dan 6 ni ayirish.
\frac{25x^{0}}{\left(6x+25\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{25\times 1}{\left(6x+25\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\frac{25}{\left(6x+25\right)^{2}}
Har qanday t sharti uchun t\times 1=t va 1t=t.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}