Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\frac{x\times 3x^{2}}{6x^{2}y^{2}}+\frac{y\times 2y^{2}}{6x^{2}y^{2}}}{\frac{1}{6xy}+\frac{2}{x^{2}y}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2y^{2} va 3x^{2} ning eng kichik umumiy karralisi 6x^{2}y^{2}. \frac{x}{2y^{2}} ni \frac{3x^{2}}{3x^{2}} marotabaga ko'paytirish. \frac{y}{3x^{2}} ni \frac{2y^{2}}{2y^{2}} marotabaga ko'paytirish.
\frac{\frac{x\times 3x^{2}+y\times 2y^{2}}{6x^{2}y^{2}}}{\frac{1}{6xy}+\frac{2}{x^{2}y}}
\frac{x\times 3x^{2}}{6x^{2}y^{2}} va \frac{y\times 2y^{2}}{6x^{2}y^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{1}{6xy}+\frac{2}{x^{2}y}}
x\times 3x^{2}+y\times 2y^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{x}{6yx^{2}}+\frac{2\times 6}{6yx^{2}}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 6xy va x^{2}y ning eng kichik umumiy karralisi 6yx^{2}. \frac{1}{6xy} ni \frac{x}{x} marotabaga ko'paytirish. \frac{2}{x^{2}y} ni \frac{6}{6} marotabaga ko'paytirish.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{x+2\times 6}{6yx^{2}}}
\frac{x}{6yx^{2}} va \frac{2\times 6}{6yx^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{x+12}{6yx^{2}}}
x+2\times 6 ichidagi ko‘paytirishlarni bajaring.
\frac{\left(3x^{3}+2y^{3}\right)\times 6yx^{2}}{6x^{2}y^{2}\left(x+12\right)}
\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}} ni \frac{x+12}{6yx^{2}} ga bo'lish \frac{3x^{3}+2y^{3}}{6x^{2}y^{2}} ga k'paytirish \frac{x+12}{6yx^{2}} ga qaytarish.
\frac{3x^{3}+2y^{3}}{y\left(x+12\right)}
Surat va maxrajdagi ikkala 6yx^{2} ni qisqartiring.
\frac{3x^{3}+2y^{3}}{yx+12y}
y ga x+12 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\frac{x\times 3x^{2}}{6x^{2}y^{2}}+\frac{y\times 2y^{2}}{6x^{2}y^{2}}}{\frac{1}{6xy}+\frac{2}{x^{2}y}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2y^{2} va 3x^{2} ning eng kichik umumiy karralisi 6x^{2}y^{2}. \frac{x}{2y^{2}} ni \frac{3x^{2}}{3x^{2}} marotabaga ko'paytirish. \frac{y}{3x^{2}} ni \frac{2y^{2}}{2y^{2}} marotabaga ko'paytirish.
\frac{\frac{x\times 3x^{2}+y\times 2y^{2}}{6x^{2}y^{2}}}{\frac{1}{6xy}+\frac{2}{x^{2}y}}
\frac{x\times 3x^{2}}{6x^{2}y^{2}} va \frac{y\times 2y^{2}}{6x^{2}y^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{1}{6xy}+\frac{2}{x^{2}y}}
x\times 3x^{2}+y\times 2y^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{x}{6yx^{2}}+\frac{2\times 6}{6yx^{2}}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 6xy va x^{2}y ning eng kichik umumiy karralisi 6yx^{2}. \frac{1}{6xy} ni \frac{x}{x} marotabaga ko'paytirish. \frac{2}{x^{2}y} ni \frac{6}{6} marotabaga ko'paytirish.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{x+2\times 6}{6yx^{2}}}
\frac{x}{6yx^{2}} va \frac{2\times 6}{6yx^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}}}{\frac{x+12}{6yx^{2}}}
x+2\times 6 ichidagi ko‘paytirishlarni bajaring.
\frac{\left(3x^{3}+2y^{3}\right)\times 6yx^{2}}{6x^{2}y^{2}\left(x+12\right)}
\frac{3x^{3}+2y^{3}}{6x^{2}y^{2}} ni \frac{x+12}{6yx^{2}} ga bo'lish \frac{3x^{3}+2y^{3}}{6x^{2}y^{2}} ga k'paytirish \frac{x+12}{6yx^{2}} ga qaytarish.
\frac{3x^{3}+2y^{3}}{y\left(x+12\right)}
Surat va maxrajdagi ikkala 6yx^{2} ni qisqartiring.
\frac{3x^{3}+2y^{3}}{yx+12y}
y ga x+12 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.