Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{14}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x+3 va x+4 ning eng kichik umumiy karralisi \left(x+3\right)\left(x+4\right). \frac{x+4}{x+3} ni \frac{x+4}{x+4} marotabaga ko'paytirish. \frac{x-3}{x+4} ni \frac{x+3}{x+3} marotabaga ko'paytirish.
\frac{\frac{\left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{14}
\frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} va \frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{x^{2}+4x+4x+16-x^{2}-3x+3x+9}{\left(x+3\right)\left(x+4\right)}}{14}
\left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{8x+25}{\left(x+3\right)\left(x+4\right)}}{14}
x^{2}+4x+4x+16-x^{2}-3x+3x+9 kabi iboralarga o‘xshab birlashtiring.
\frac{8x+25}{\left(x+3\right)\left(x+4\right)\times 14}
\frac{\frac{8x+25}{\left(x+3\right)\left(x+4\right)}}{14} ni yagona kasrga aylantiring.
\frac{8x+25}{\left(x^{2}+4x+3x+12\right)\times 14}
x+3 ifodaning har bir elementini x+4 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{8x+25}{\left(x^{2}+7x+12\right)\times 14}
7x ni olish uchun 4x va 3x ni birlashtirish.
\frac{8x+25}{14x^{2}+98x+168}
x^{2}+7x+12 ga 14 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{14}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x+3 va x+4 ning eng kichik umumiy karralisi \left(x+3\right)\left(x+4\right). \frac{x+4}{x+3} ni \frac{x+4}{x+4} marotabaga ko'paytirish. \frac{x-3}{x+4} ni \frac{x+3}{x+3} marotabaga ko'paytirish.
\frac{\frac{\left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{14}
\frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} va \frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{x^{2}+4x+4x+16-x^{2}-3x+3x+9}{\left(x+3\right)\left(x+4\right)}}{14}
\left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{8x+25}{\left(x+3\right)\left(x+4\right)}}{14}
x^{2}+4x+4x+16-x^{2}-3x+3x+9 kabi iboralarga o‘xshab birlashtiring.
\frac{8x+25}{\left(x+3\right)\left(x+4\right)\times 14}
\frac{\frac{8x+25}{\left(x+3\right)\left(x+4\right)}}{14} ni yagona kasrga aylantiring.
\frac{8x+25}{\left(x^{2}+4x+3x+12\right)\times 14}
x+3 ifodaning har bir elementini x+4 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{8x+25}{\left(x^{2}+7x+12\right)\times 14}
7x ni olish uchun 4x va 3x ni birlashtirish.
\frac{8x+25}{14x^{2}+98x+168}
x^{2}+7x+12 ga 14 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.