\frac { \frac { s } { 100 + s } \times a } { a + 4 a } \times 100 \%
Baholash
\frac{s}{5\left(s+100\right)}
s ga nisbatan hosilani topish
\frac{20}{\left(s+100\right)^{2}}
Viktorina
Algebra
5xshash muammolar:
\frac { \frac { s } { 100 + s } \times a } { a + 4 a } \times 100 \%
Baham ko'rish
Klipbordga nusxa olish
\frac{\frac{s}{100+s}a}{a+4a}\times 1
1 ni olish uchun 100 ni 100 ga bo‘ling.
\frac{\frac{sa}{100+s}}{a+4a}\times 1
\frac{s}{100+s}a ni yagona kasrga aylantiring.
\frac{\frac{sa}{100+s}}{5a}\times 1
5a ni olish uchun a va 4a ni birlashtirish.
\frac{sa}{\left(100+s\right)\times 5a}\times 1
\frac{\frac{sa}{100+s}}{5a} ni yagona kasrga aylantiring.
\frac{s}{5\left(s+100\right)}\times 1
Surat va maxrajdagi ikkala a ni qisqartiring.
\frac{s}{5\left(s+100\right)}
\frac{s}{5\left(s+100\right)}\times 1 ni yagona kasrga aylantiring.
\frac{s}{5s+500}
5 ga s+100 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{\frac{s}{100+s}a}{a+4a}\times 1)
1 ni olish uchun 100 ni 100 ga bo‘ling.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{\frac{sa}{100+s}}{a+4a}\times 1)
\frac{s}{100+s}a ni yagona kasrga aylantiring.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{\frac{sa}{100+s}}{5a}\times 1)
5a ni olish uchun a va 4a ni birlashtirish.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{sa}{\left(100+s\right)\times 5a}\times 1)
\frac{\frac{sa}{100+s}}{5a} ni yagona kasrga aylantiring.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{s}{5\left(s+100\right)}\times 1)
Surat va maxrajdagi ikkala a ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{s}{5\left(s+100\right)})
\frac{s}{5\left(s+100\right)}\times 1 ni yagona kasrga aylantiring.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{s}{5s+500})
5 ga s+100 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\left(5s^{1}+500\right)\frac{\mathrm{d}}{\mathrm{d}s}(s^{1})-s^{1}\frac{\mathrm{d}}{\mathrm{d}s}(5s^{1}+500)}{\left(5s^{1}+500\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(5s^{1}+500\right)s^{1-1}-s^{1}\times 5s^{1-1}}{\left(5s^{1}+500\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(5s^{1}+500\right)s^{0}-s^{1}\times 5s^{0}}{\left(5s^{1}+500\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{5s^{1}s^{0}+500s^{0}-s^{1}\times 5s^{0}}{\left(5s^{1}+500\right)^{2}}
Distributiv xususiyatdan foydalanib kengaytirish.
\frac{5s^{1}+500s^{0}-5s^{1}}{\left(5s^{1}+500\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{\left(5-5\right)s^{1}+500s^{0}}{\left(5s^{1}+500\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{500s^{0}}{\left(5s^{1}+500\right)^{2}}
5 dan 5 ni ayirish.
\frac{500s^{0}}{\left(5s+500\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{500\times 1}{\left(5s+500\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\frac{500}{\left(5s+500\right)^{2}}
Har qanday t sharti uchun t\times 1=t va 1t=t.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}