Asosiy tarkibga oʻtish
Baholash
Tick mark Image
a ga nisbatan hosilani topish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{a\left(a+2\right)}{\left(a^{2}-4\right)a^{2}}
\frac{a}{a^{2}-4} ni \frac{a^{2}}{a+2} ga bo'lish \frac{a}{a^{2}-4} ga k'paytirish \frac{a^{2}}{a+2} ga qaytarish.
\frac{a+2}{a\left(a^{2}-4\right)}
Surat va maxrajdagi ikkala a ni qisqartiring.
\frac{a+2}{a\left(a-2\right)\left(a+2\right)}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{1}{a\left(a-2\right)}
Surat va maxrajdagi ikkala a+2 ni qisqartiring.
\frac{1}{a^{2}-2a}
Ifodani kengaytiring.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a+2\right)}{\left(a^{2}-4\right)a^{2}})
\frac{a}{a^{2}-4} ni \frac{a^{2}}{a+2} ga bo'lish \frac{a}{a^{2}-4} ga k'paytirish \frac{a^{2}}{a+2} ga qaytarish.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a+2}{a\left(a^{2}-4\right)})
Surat va maxrajdagi ikkala a ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a+2}{a\left(a-2\right)\left(a+2\right)})
\frac{a+2}{a\left(a^{2}-4\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a\left(a-2\right)})
Surat va maxrajdagi ikkala a+2 ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a^{2}-2a})
a ga a-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\left(a^{2}-2a^{1}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}-2a^{1})
Agar F ikki differensial funksiya f\left(u\right) va u=g\left(x\right)'ning yig'indisi bo'lsa, ya'ni agar F\left(x\right)=f\left(g\left(x\right)\right) bo'lsa, F hosilasi f'ning u martalik hosilasi, g'ning x martalik hosilasi ya'ni \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) bo'ladi.
-\left(a^{2}-2a^{1}\right)^{-2}\left(2a^{2-1}-2a^{1-1}\right)
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\left(a^{2}-2a^{1}\right)^{-2}\left(-2a^{1}+2a^{0}\right)
Qisqartirish.
\left(a^{2}-2a\right)^{-2}\left(-2a+2a^{0}\right)
Har qanday t sharti uchun t^{1}=t.
\left(a^{2}-2a\right)^{-2}\left(-2a+2\times 1\right)
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\left(a^{2}-2a\right)^{-2}\left(-2a+2\right)
Har qanday t sharti uchun t\times 1=t va 1t=t.