Baholash
-\frac{5\left(h+4\right)}{h\left(h+5\right)}
Kengaytirish
-\frac{5\left(h+4\right)}{h\left(h+5\right)}
Baham ko'rish
Klipbordga nusxa olish
\frac{\frac{5}{5+h}-\frac{5\left(5+h\right)}{5+h}}{h}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 5 ni \frac{5+h}{5+h} marotabaga ko'paytirish.
\frac{\frac{5-5\left(5+h\right)}{5+h}}{h}
\frac{5}{5+h} va \frac{5\left(5+h\right)}{5+h} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{5-25-5h}{5+h}}{h}
5-5\left(5+h\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{-20-5h}{5+h}}{h}
5-25-5h kabi iboralarga o‘xshab birlashtiring.
\frac{-20-5h}{\left(5+h\right)h}
\frac{\frac{-20-5h}{5+h}}{h} ni yagona kasrga aylantiring.
\frac{-20-5h}{5h+h^{2}}
5+h ga h ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\frac{5}{5+h}-\frac{5\left(5+h\right)}{5+h}}{h}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 5 ni \frac{5+h}{5+h} marotabaga ko'paytirish.
\frac{\frac{5-5\left(5+h\right)}{5+h}}{h}
\frac{5}{5+h} va \frac{5\left(5+h\right)}{5+h} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{5-25-5h}{5+h}}{h}
5-5\left(5+h\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{-20-5h}{5+h}}{h}
5-25-5h kabi iboralarga o‘xshab birlashtiring.
\frac{-20-5h}{\left(5+h\right)h}
\frac{\frac{-20-5h}{5+h}}{h} ni yagona kasrga aylantiring.
\frac{-20-5h}{5h+h^{2}}
5+h ga h ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}