Baholash
\frac{\left(3-2x\right)\left(x+1\right)}{x\left(2x+1\right)}
Kengaytirish
\frac{3+x-2x^{2}}{x\left(2x+1\right)}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{\frac{3-2x}{x^{3}}}{\frac{2}{x^{2}}-\frac{1}{\left(x+1\right)x^{2}}}
Faktor: x^{3}+x^{2}.
\frac{\frac{3-2x}{x^{3}}}{\frac{2\left(x+1\right)}{\left(x+1\right)x^{2}}-\frac{1}{\left(x+1\right)x^{2}}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x^{2} va \left(x+1\right)x^{2} ning eng kichik umumiy karralisi \left(x+1\right)x^{2}. \frac{2}{x^{2}} ni \frac{x+1}{x+1} marotabaga ko'paytirish.
\frac{\frac{3-2x}{x^{3}}}{\frac{2\left(x+1\right)-1}{\left(x+1\right)x^{2}}}
\frac{2\left(x+1\right)}{\left(x+1\right)x^{2}} va \frac{1}{\left(x+1\right)x^{2}} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{3-2x}{x^{3}}}{\frac{2x+2-1}{\left(x+1\right)x^{2}}}
2\left(x+1\right)-1 ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{3-2x}{x^{3}}}{\frac{2x+1}{\left(x+1\right)x^{2}}}
2x+2-1 kabi iboralarga o‘xshab birlashtiring.
\frac{\left(3-2x\right)\left(x+1\right)x^{2}}{x^{3}\left(2x+1\right)}
\frac{3-2x}{x^{3}} ni \frac{2x+1}{\left(x+1\right)x^{2}} ga bo'lish \frac{3-2x}{x^{3}} ga k'paytirish \frac{2x+1}{\left(x+1\right)x^{2}} ga qaytarish.
\frac{\left(x+1\right)\left(-2x+3\right)}{x\left(2x+1\right)}
Surat va maxrajdagi ikkala x^{2} ni qisqartiring.
\frac{-2x^{2}+x+3}{x\left(2x+1\right)}
x+1 ga -2x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\frac{-2x^{2}+x+3}{2x^{2}+x}
x ga 2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\frac{3-2x}{x^{3}}}{\frac{2}{x^{2}}-\frac{1}{\left(x+1\right)x^{2}}}
Faktor: x^{3}+x^{2}.
\frac{\frac{3-2x}{x^{3}}}{\frac{2\left(x+1\right)}{\left(x+1\right)x^{2}}-\frac{1}{\left(x+1\right)x^{2}}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x^{2} va \left(x+1\right)x^{2} ning eng kichik umumiy karralisi \left(x+1\right)x^{2}. \frac{2}{x^{2}} ni \frac{x+1}{x+1} marotabaga ko'paytirish.
\frac{\frac{3-2x}{x^{3}}}{\frac{2\left(x+1\right)-1}{\left(x+1\right)x^{2}}}
\frac{2\left(x+1\right)}{\left(x+1\right)x^{2}} va \frac{1}{\left(x+1\right)x^{2}} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{3-2x}{x^{3}}}{\frac{2x+2-1}{\left(x+1\right)x^{2}}}
2\left(x+1\right)-1 ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{3-2x}{x^{3}}}{\frac{2x+1}{\left(x+1\right)x^{2}}}
2x+2-1 kabi iboralarga o‘xshab birlashtiring.
\frac{\left(3-2x\right)\left(x+1\right)x^{2}}{x^{3}\left(2x+1\right)}
\frac{3-2x}{x^{3}} ni \frac{2x+1}{\left(x+1\right)x^{2}} ga bo'lish \frac{3-2x}{x^{3}} ga k'paytirish \frac{2x+1}{\left(x+1\right)x^{2}} ga qaytarish.
\frac{\left(x+1\right)\left(-2x+3\right)}{x\left(2x+1\right)}
Surat va maxrajdagi ikkala x^{2} ni qisqartiring.
\frac{-2x^{2}+x+3}{x\left(2x+1\right)}
x+1 ga -2x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\frac{-2x^{2}+x+3}{2x^{2}+x}
x ga 2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}