Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image

Baham ko'rish

\frac{1}{y\times 2x}\times \frac{\frac{1}{2x}}{\frac{1}{y}}
\frac{\frac{1}{y}}{2x} ni yagona kasrga aylantiring.
\frac{1}{y\times 2x}\times \frac{y}{2x}
\frac{1}{2x} ni \frac{1}{y} ga bo'lish \frac{1}{2x} ga k'paytirish \frac{1}{y} ga qaytarish.
\frac{y}{y\times 2x\times 2x}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{y\times 2x} ni \frac{y}{2x} ga ko‘paytiring.
\frac{1}{2\times 2xx}
Surat va maxrajdagi ikkala y ni qisqartiring.
\frac{1}{2\times 2x^{2}}
x^{2} hosil qilish uchun x va x ni ko'paytirish.
\frac{1}{4x^{2}}
4 hosil qilish uchun 2 va 2 ni ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{y\times 2x}\times \frac{\frac{1}{2x}}{\frac{1}{y}})
\frac{\frac{1}{y}}{2x} ni yagona kasrga aylantiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{y\times 2x}\times \frac{y}{2x})
\frac{1}{2x} ni \frac{1}{y} ga bo'lish \frac{1}{2x} ga k'paytirish \frac{1}{y} ga qaytarish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{y}{y\times 2x\times 2x})
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{y\times 2x} ni \frac{y}{2x} ga ko‘paytiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2\times 2xx})
Surat va maxrajdagi ikkala y ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2\times 2x^{2}})
x^{2} hosil qilish uchun x va x ni ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{4x^{2}})
4 hosil qilish uchun 2 va 2 ni ko'paytirish.
-\left(4x^{2}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(4x^{2})
Agar F ikki differensial funksiya f\left(u\right) va u=g\left(x\right)'ning yig'indisi bo'lsa, ya'ni agar F\left(x\right)=f\left(g\left(x\right)\right) bo'lsa, F hosilasi f'ning u martalik hosilasi, g'ning x martalik hosilasi ya'ni \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) bo'ladi.
-\left(4x^{2}\right)^{-2}\times 2\times 4x^{2-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
-8x^{1}\times \left(4x^{2}\right)^{-2}
Qisqartirish.
-8x\times \left(4x^{2}\right)^{-2}
Har qanday t sharti uchun t^{1}=t.