Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\frac{1}{x\left(x-y\right)}-\frac{1}{y\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Faktor: x^{2}-xy. Faktor: y^{2}-xy.
\frac{\frac{-y}{xy\left(-x+y\right)}-\frac{x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x\left(x-y\right) va y\left(-x+y\right) ning eng kichik umumiy karralisi xy\left(-x+y\right). \frac{1}{x\left(x-y\right)} ni \frac{-y}{-y} marotabaga ko'paytirish. \frac{1}{y\left(-x+y\right)} ni \frac{x}{x} marotabaga ko'paytirish.
\frac{\frac{-y-x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
\frac{-y}{xy\left(-x+y\right)} va \frac{x}{xy\left(-x+y\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\left(-y-x\right)\left(x^{2}y-y^{2}x\right)}{xy\left(-x+y\right)}
\frac{-y-x}{xy\left(-x+y\right)} ni \frac{1}{x^{2}y-y^{2}x} ga bo'lish \frac{-y-x}{xy\left(-x+y\right)} ga k'paytirish \frac{1}{x^{2}y-y^{2}x} ga qaytarish.
\frac{xy\left(x-y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{-xy\left(-x+y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
x-y mislodagi manfiy ishorani chiqarib tashlang.
-\left(-x-y\right)
Surat va maxrajdagi ikkala xy\left(-x+y\right) ni qisqartiring.
x+y
Ifodani kengaytiring.
\frac{\frac{1}{x\left(x-y\right)}-\frac{1}{y\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Faktor: x^{2}-xy. Faktor: y^{2}-xy.
\frac{\frac{-y}{xy\left(-x+y\right)}-\frac{x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x\left(x-y\right) va y\left(-x+y\right) ning eng kichik umumiy karralisi xy\left(-x+y\right). \frac{1}{x\left(x-y\right)} ni \frac{-y}{-y} marotabaga ko'paytirish. \frac{1}{y\left(-x+y\right)} ni \frac{x}{x} marotabaga ko'paytirish.
\frac{\frac{-y-x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
\frac{-y}{xy\left(-x+y\right)} va \frac{x}{xy\left(-x+y\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\left(-y-x\right)\left(x^{2}y-y^{2}x\right)}{xy\left(-x+y\right)}
\frac{-y-x}{xy\left(-x+y\right)} ni \frac{1}{x^{2}y-y^{2}x} ga bo'lish \frac{-y-x}{xy\left(-x+y\right)} ga k'paytirish \frac{1}{x^{2}y-y^{2}x} ga qaytarish.
\frac{xy\left(x-y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{-xy\left(-x+y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
x-y mislodagi manfiy ishorani chiqarib tashlang.
-\left(-x-y\right)
Surat va maxrajdagi ikkala xy\left(-x+y\right) ni qisqartiring.
x+y
Ifodani kengaytiring.