Baholash
\frac{1}{h^{2}}
h ga nisbatan hosilani topish
-\frac{2}{h^{3}}
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{hh}
\frac{\frac{1}{h}}{h} ni yagona kasrga aylantiring.
\frac{1}{h^{2}}
h^{2} hosil qilish uchun h va h ni ko'paytirish.
\frac{1}{h}\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{h})+\frac{1}{h}\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{h})
Har qanday ikki differensial funksiya uchun, ikki funksiya koʻpaytmasining hosilasi birinchi funksiya marotabasi, ikkinchi plyus hosilasi ikkinchi funksiya marotabasi birinchining hosilasidir.
\frac{1}{h}\left(-1\right)h^{-1-1}+\frac{1}{h}\left(-1\right)h^{-1-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{1}{h}\left(-1\right)h^{-2}+\frac{1}{h}\left(-1\right)h^{-2}
Qisqartirish.
-h^{-1-2}-h^{-1-2}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
-h^{-3}-h^{-3}
Qisqartirish.
\left(-1-1\right)h^{-3}
O'xshash hadlarni birlashtirish.
-2h^{-3}
-1 ni -1 ga qo'shish.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{1}h^{-1-1})
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{\mathrm{d}}{\mathrm{d}h}(h^{-2})
Arifmetik hisobni amalga oshirish.
-2h^{-2-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
-2h^{-3}
Arifmetik hisobni amalga oshirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}