Baholash
-\frac{2b-a}{3b-a}
Kengaytirish
-\frac{2b-a}{3b-a}
Baham ko'rish
Klipbordga nusxa olish
\frac{\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a-b va a+b ning eng kichik umumiy karralisi \left(a+b\right)\left(a-b\right). \frac{1}{a-b} ni \frac{a+b}{a+b} marotabaga ko'paytirish. \frac{3}{a+b} ni \frac{a-b}{a-b} marotabaga ko'paytirish.
\frac{\frac{a+b-3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
\frac{a+b}{\left(a+b\right)\left(a-b\right)} va \frac{3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{a+b-3a+3b}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
a+b-3\left(a-b\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
a+b-3a+3b kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)}+\frac{4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. b-a va b+a ning eng kichik umumiy karralisi \left(a+b\right)\left(-a+b\right). \frac{2}{b-a} ni \frac{a+b}{a+b} marotabaga ko'paytirish. \frac{4}{b+a} ni \frac{-a+b}{-a+b} marotabaga ko'paytirish.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2\left(a+b\right)+4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}}
\frac{2\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)} va \frac{4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2a+2b-4a+4b}{\left(a+b\right)\left(-a+b\right)}}
2\left(a+b\right)+4\left(-a+b\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)}}
2a+2b-4a+4b kabi iboralarga o‘xshab birlashtiring.
\frac{\left(-2a+4b\right)\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(a-b\right)\left(-2a+6b\right)}
\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)} ni \frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)} ga bo'lish \frac{-2a+4b}{\left(a+b\right)\left(a-b\right)} ga k'paytirish \frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)} ga qaytarish.
\frac{-\left(a+b\right)\left(a-b\right)\left(-2a+4b\right)}{\left(a+b\right)\left(a-b\right)\left(-2a+6b\right)}
-a+b mislodagi manfiy ishorani chiqarib tashlang.
\frac{-\left(-2a+4b\right)}{-2a+6b}
Surat va maxrajdagi ikkala \left(a+b\right)\left(a-b\right) ni qisqartiring.
\frac{-2\left(-a+2b\right)}{2\left(-a+3b\right)}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{-\left(-a+2b\right)}{-a+3b}
Surat va maxrajdagi ikkala 2 ni qisqartiring.
\frac{a-2b}{-a+3b}
Ifodani kengaytiring.
\frac{\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a-b va a+b ning eng kichik umumiy karralisi \left(a+b\right)\left(a-b\right). \frac{1}{a-b} ni \frac{a+b}{a+b} marotabaga ko'paytirish. \frac{3}{a+b} ni \frac{a-b}{a-b} marotabaga ko'paytirish.
\frac{\frac{a+b-3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
\frac{a+b}{\left(a+b\right)\left(a-b\right)} va \frac{3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{a+b-3a+3b}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
a+b-3\left(a-b\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
a+b-3a+3b kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)}+\frac{4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. b-a va b+a ning eng kichik umumiy karralisi \left(a+b\right)\left(-a+b\right). \frac{2}{b-a} ni \frac{a+b}{a+b} marotabaga ko'paytirish. \frac{4}{b+a} ni \frac{-a+b}{-a+b} marotabaga ko'paytirish.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2\left(a+b\right)+4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}}
\frac{2\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)} va \frac{4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2a+2b-4a+4b}{\left(a+b\right)\left(-a+b\right)}}
2\left(a+b\right)+4\left(-a+b\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)}}
2a+2b-4a+4b kabi iboralarga o‘xshab birlashtiring.
\frac{\left(-2a+4b\right)\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(a-b\right)\left(-2a+6b\right)}
\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)} ni \frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)} ga bo'lish \frac{-2a+4b}{\left(a+b\right)\left(a-b\right)} ga k'paytirish \frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)} ga qaytarish.
\frac{-\left(a+b\right)\left(a-b\right)\left(-2a+4b\right)}{\left(a+b\right)\left(a-b\right)\left(-2a+6b\right)}
-a+b mislodagi manfiy ishorani chiqarib tashlang.
\frac{-\left(-2a+4b\right)}{-2a+6b}
Surat va maxrajdagi ikkala \left(a+b\right)\left(a-b\right) ni qisqartiring.
\frac{-2\left(-a+2b\right)}{2\left(-a+3b\right)}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{-\left(-a+2b\right)}{-a+3b}
Surat va maxrajdagi ikkala 2 ni qisqartiring.
\frac{a-2b}{-a+3b}
Ifodani kengaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}