Baholash
\frac{a^{2}+1}{\left(a+1\right)a^{3}}
a ga nisbatan hosilani topish
-\frac{2a^{3}+a^{2}+4a+3}{\left(a+1\right)^{2}a^{4}}
Baham ko'rish
Klipbordga nusxa olish
\frac{\frac{1}{a+1}}{a-\frac{1}{\frac{aa}{a}+\frac{1}{a}}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a ni \frac{a}{a} marotabaga ko'paytirish.
\frac{\frac{1}{a+1}}{a-\frac{1}{\frac{aa+1}{a}}}
\frac{aa}{a} va \frac{1}{a} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{1}{a+1}}{a-\frac{1}{\frac{a^{2}+1}{a}}}
aa+1 ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{1}{a+1}}{a-\frac{a}{a^{2}+1}}
1 ni \frac{a^{2}+1}{a} ga bo'lish 1 ga k'paytirish \frac{a^{2}+1}{a} ga qaytarish.
\frac{\frac{1}{a+1}}{\frac{a\left(a^{2}+1\right)}{a^{2}+1}-\frac{a}{a^{2}+1}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a ni \frac{a^{2}+1}{a^{2}+1} marotabaga ko'paytirish.
\frac{\frac{1}{a+1}}{\frac{a\left(a^{2}+1\right)-a}{a^{2}+1}}
\frac{a\left(a^{2}+1\right)}{a^{2}+1} va \frac{a}{a^{2}+1} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{1}{a+1}}{\frac{a^{3}+a-a}{a^{2}+1}}
a\left(a^{2}+1\right)-a ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{1}{a+1}}{\frac{a^{3}}{a^{2}+1}}
a^{3}+a-a kabi iboralarga o‘xshab birlashtiring.
\frac{a^{2}+1}{\left(a+1\right)a^{3}}
\frac{1}{a+1} ni \frac{a^{3}}{a^{2}+1} ga bo'lish \frac{1}{a+1} ga k'paytirish \frac{a^{3}}{a^{2}+1} ga qaytarish.
\frac{a^{2}+1}{a^{4}+a^{3}}
a+1 ga a^{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{a-\frac{1}{\frac{aa}{a}+\frac{1}{a}}})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a ni \frac{a}{a} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{a-\frac{1}{\frac{aa+1}{a}}})
\frac{aa}{a} va \frac{1}{a} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{a-\frac{1}{\frac{a^{2}+1}{a}}})
aa+1 ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{a-\frac{a}{a^{2}+1}})
1 ni \frac{a^{2}+1}{a} ga bo'lish 1 ga k'paytirish \frac{a^{2}+1}{a} ga qaytarish.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{\frac{a\left(a^{2}+1\right)}{a^{2}+1}-\frac{a}{a^{2}+1}})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a ni \frac{a^{2}+1}{a^{2}+1} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{\frac{a\left(a^{2}+1\right)-a}{a^{2}+1}})
\frac{a\left(a^{2}+1\right)}{a^{2}+1} va \frac{a}{a^{2}+1} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{\frac{a^{3}+a-a}{a^{2}+1}})
a\left(a^{2}+1\right)-a ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{\frac{a^{3}}{a^{2}+1}})
a^{3}+a-a kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}+1}{\left(a+1\right)a^{3}})
\frac{1}{a+1} ni \frac{a^{3}}{a^{2}+1} ga bo'lish \frac{1}{a+1} ga k'paytirish \frac{a^{3}}{a^{2}+1} ga qaytarish.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}+1}{a^{4}+a^{3}})
a+1 ga a^{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\left(a^{4}+a^{3}\right)\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}+1)-\left(a^{2}+1\right)\frac{\mathrm{d}}{\mathrm{d}a}(a^{4}+a^{3})}{\left(a^{4}+a^{3}\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(a^{4}+a^{3}\right)\times 2a^{2-1}-\left(a^{2}+1\right)\left(4a^{4-1}+3a^{3-1}\right)}{\left(a^{4}+a^{3}\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(a^{4}+a^{3}\right)\times 2a^{1}-\left(a^{2}+1\right)\left(4a^{3}+3a^{2}\right)}{\left(a^{4}+a^{3}\right)^{2}}
Qisqartirish.
\frac{a^{4}\times 2a^{1}+a^{3}\times 2a^{1}-\left(a^{2}+1\right)\left(4a^{3}+3a^{2}\right)}{\left(a^{4}+a^{3}\right)^{2}}
a^{4}+a^{3} ni 2a^{1} marotabaga ko'paytirish.
\frac{a^{4}\times 2a^{1}+a^{3}\times 2a^{1}-\left(a^{2}\times 4a^{3}+a^{2}\times 3a^{2}+4a^{3}+3a^{2}\right)}{\left(a^{4}+a^{3}\right)^{2}}
a^{2}+1 ni 4a^{3}+3a^{2} marotabaga ko'paytirish.
\frac{2a^{4+1}+2a^{3+1}-\left(4a^{2+3}+3a^{2+2}+4a^{3}+3a^{2}\right)}{\left(a^{4}+a^{3}\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{2a^{5}+2a^{4}-\left(4a^{5}+3a^{4}+4a^{3}+3a^{2}\right)}{\left(a^{4}+a^{3}\right)^{2}}
Qisqartirish.
\frac{-2a^{5}-a^{4}-4a^{3}-3a^{2}}{\left(a^{4}+a^{3}\right)^{2}}
O'xshash hadlarni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}