Asosiy tarkibga oʻtish
Baholash
Tick mark Image
t ga nisbatan hosilani topish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{t\left(t-\frac{2}{t}\right)}
\frac{\frac{1}{t}}{t-\frac{2}{t}} ni yagona kasrga aylantiring.
\frac{1}{t\left(\frac{tt}{t}-\frac{2}{t}\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. t ni \frac{t}{t} marotabaga ko'paytirish.
\frac{1}{t\times \frac{tt-2}{t}}
\frac{tt}{t} va \frac{2}{t} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{1}{t\times \frac{t^{2}-2}{t}}
tt-2 ichidagi ko‘paytirishlarni bajaring.
\frac{1}{t^{2}-2}
t va t ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{t\left(t-\frac{2}{t}\right)})
\frac{\frac{1}{t}}{t-\frac{2}{t}} ni yagona kasrga aylantiring.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{t\left(\frac{tt}{t}-\frac{2}{t}\right)})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. t ni \frac{t}{t} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{t\times \frac{tt-2}{t}})
\frac{tt}{t} va \frac{2}{t} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{t\times \frac{t^{2}-2}{t}})
tt-2 ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{t^{2}-2})
t va t ni qisqartiring.
-\left(t^{2}-2\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}t}(t^{2}-2)
Agar F ikki differensial funksiya f\left(u\right) va u=g\left(x\right)'ning yig'indisi bo'lsa, ya'ni agar F\left(x\right)=f\left(g\left(x\right)\right) bo'lsa, F hosilasi f'ning u martalik hosilasi, g'ning x martalik hosilasi ya'ni \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) bo'ladi.
-\left(t^{2}-2\right)^{-2}\times 2t^{2-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
-2t^{1}\left(t^{2}-2\right)^{-2}
Qisqartirish.
-2t\left(t^{2}-2\right)^{-2}
Har qanday t sharti uchun t^{1}=t.