Asosiy tarkibga oʻtish
n ga nisbatan hosilani topish
Tick mark Image
Baholash
Tick mark Image

Baham ko'rish

\frac{\mathrm{d}}{\mathrm{d}n}(\cos(n))=\left(\lim_{h\to 0}\frac{\cos(n+h)-\cos(n)}{h}\right)
f\left(x\right) funksiyasi uchun, hosilasi \frac{f\left(x+h\right)-f\left(x\right)}{h} cheklovidir, chunki ana shu cheklov mavjud bo'lsa, h 0'ga o'tadi.
\lim_{h\to 0}\frac{\cos(n+h)-\cos(n)}{h}
Kosinus uchun yig'indi formulasidan foydalanish.
\lim_{h\to 0}\frac{\cos(n)\left(\cos(h)-1\right)-\sin(n)\sin(h)}{h}
\cos(n) omili.
\left(\lim_{h\to 0}\cos(n)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\left(\lim_{h\to 0}\sin(n)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Chegarani qayta yozish.
\cos(n)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(n)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Limitlar h dan 0 sifatida hisoblanganda n ni konstanta sifatida foydalanish.
\cos(n)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(n)
\lim_{n\to 0}\frac{\sin(n)}{n} chegarasi 1 dir.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
\lim_{h\to 0}\frac{\cos(h)-1}{h} chegarasini baholash uchun, avval surat va maxrajni \cos(h)+1 ga ko'paytiring.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
\cos(h)+1 ni \cos(h)-1 marotabaga ko'paytirish.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Pifagor ayniyatidan foydalanish.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Chegarani qayta yozish.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
\lim_{n\to 0}\frac{\sin(n)}{n} chegarasi 1 dir.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
\frac{\sin(h)}{\cos(h)+1} 0 da davomiy sifatida foydalanish.
-\sin(n)
0 qiymatini \cos(n)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(n) ifodasiga almashtirish.