Tasdiqlamoq
toʻgʻri
Baham ko'rish
Klipbordga nusxa olish
\cos(60)=\frac{1-\left(\tan(30)\right)^{2}}{1+\left(\tan(30)\right)^{2}}
60 hosil qilish uchun 2 va 30 ni ko'paytirish.
\frac{1}{2}=\frac{1-\left(\tan(30)\right)^{2}}{1+\left(\tan(30)\right)^{2}}
Trigonometrik qiymatlar jadvaldan \cos(60) qiymatini oling.
\frac{1}{2}=\frac{1-\left(\frac{\sqrt{3}}{3}\right)^{2}}{1+\left(\tan(30)\right)^{2}}
Trigonometrik qiymatlar jadvaldan \tan(30) qiymatini oling.
\frac{1}{2}=\frac{1-\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}}{1+\left(\tan(30)\right)^{2}}
\frac{\sqrt{3}}{3}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{1}{2}=\frac{1-\frac{3}{3^{2}}}{1+\left(\tan(30)\right)^{2}}
\sqrt{3} kvadrati – 3.
\frac{1}{2}=\frac{1-\frac{3}{9}}{1+\left(\tan(30)\right)^{2}}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
\frac{1}{2}=\frac{1-\frac{1}{3}}{1+\left(\tan(30)\right)^{2}}
\frac{3}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{2}=\frac{\frac{2}{3}}{1+\left(\tan(30)\right)^{2}}
\frac{2}{3} olish uchun 1 dan \frac{1}{3} ni ayirish.
\frac{1}{2}=\frac{\frac{2}{3}}{1+\left(\frac{\sqrt{3}}{3}\right)^{2}}
Trigonometrik qiymatlar jadvaldan \tan(30) qiymatini oling.
\frac{1}{2}=\frac{\frac{2}{3}}{1+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}}
\frac{\sqrt{3}}{3}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{1}{2}=\frac{\frac{2}{3}}{\frac{3^{2}}{3^{2}}+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{3^{2}}{3^{2}} marotabaga ko'paytirish.
\frac{1}{2}=\frac{\frac{2}{3}}{\frac{3^{2}+\left(\sqrt{3}\right)^{2}}{3^{2}}}
\frac{3^{2}}{3^{2}} va \frac{\left(\sqrt{3}\right)^{2}}{3^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{1}{2}=\frac{2\times 3^{2}}{3\left(3^{2}+\left(\sqrt{3}\right)^{2}\right)}
\frac{2}{3} ni \frac{3^{2}+\left(\sqrt{3}\right)^{2}}{3^{2}} ga bo'lish \frac{2}{3} ga k'paytirish \frac{3^{2}+\left(\sqrt{3}\right)^{2}}{3^{2}} ga qaytarish.
\frac{1}{2}=\frac{2\times 3}{\left(\sqrt{3}\right)^{2}+3^{2}}
Surat va maxrajdagi ikkala 3 ni qisqartiring.
\frac{1}{2}=\frac{6}{\left(\sqrt{3}\right)^{2}+3^{2}}
6 hosil qilish uchun 2 va 3 ni ko'paytirish.
\frac{1}{2}=\frac{6}{3+3^{2}}
\sqrt{3} kvadrati – 3.
\frac{1}{2}=\frac{6}{3+9}
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
\frac{1}{2}=\frac{6}{12}
12 olish uchun 3 va 9'ni qo'shing.
\frac{1}{2}=\frac{1}{2}
\frac{6}{12} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\text{true}
\frac{1}{2} va \frac{1}{2} ni taqqoslang.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}