Baholash
-\frac{1}{2}=-0,5
Viktorina
Trigonometry
\cos ( -240 )
Baham ko'rish
Klipbordga nusxa olish
\cos(180+60)=\cos(180)\cos(60)-\sin(60)\sin(180)
Natijani olish uchun x=180 va y=60 boʻlganda, \cos(x+y)=\cos(x)\cos(y)-\sin(y)\sin(x) formulasidan foydalaning.
-\cos(60)-\sin(60)\sin(180)
Trigonometrik qiymatlar jadvaldan \cos(180) qiymatini oling.
-\frac{1}{2}-\sin(60)\sin(180)
Trigonometrik qiymatlar jadvaldan \cos(60) qiymatini oling.
-\frac{1}{2}-\frac{\sqrt{3}}{2}\sin(180)
Trigonometrik qiymatlar jadvaldan \sin(60) qiymatini oling.
-\frac{1}{2}-\frac{\sqrt{3}}{2}\times 0
Trigonometrik qiymatlar jadvaldan \sin(180) qiymatini oling.
-\frac{1}{2}
Hisoblarni amalga oshiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}