α uchun yechish (complex solution)
\alpha \in \mathrm{C}
β uchun yechish (complex solution)
\beta \in \mathrm{C}
α uchun yechish
\alpha \in \mathrm{R}
β uchun yechish
\beta \in \mathrm{R}
Viktorina
5xshash muammolar:
\alpha \beta ^ { 2 } + \alpha ^ { 2 } \beta = \alpha \beta ( \alpha + \beta ) =
Baham ko'rish
Klipbordga nusxa olish
\alpha \beta ^{2}+\alpha ^{2}\beta =\beta \alpha ^{2}+\alpha \beta ^{2}
\alpha \beta ga \alpha +\beta ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\alpha \beta ^{2}+\alpha ^{2}\beta -\beta \alpha ^{2}=\alpha \beta ^{2}
Ikkala tarafdan \beta \alpha ^{2} ni ayirish.
\alpha \beta ^{2}=\alpha \beta ^{2}
0 ni olish uchun \alpha ^{2}\beta va -\beta \alpha ^{2} ni birlashtirish.
\alpha \beta ^{2}-\alpha \beta ^{2}=0
Ikkala tarafdan \alpha \beta ^{2} ni ayirish.
0=0
0 ni olish uchun \alpha \beta ^{2} va -\alpha \beta ^{2} ni birlashtirish.
\text{true}
0 va 0 ni taqqoslang.
\alpha \in \mathrm{C}
Bu har qanday \alpha uchun to‘g‘ri.
\alpha \beta ^{2}+\alpha ^{2}\beta =\beta \alpha ^{2}+\alpha \beta ^{2}
\alpha \beta ga \alpha +\beta ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\alpha \beta ^{2}+\alpha ^{2}\beta -\beta \alpha ^{2}=\alpha \beta ^{2}
Ikkala tarafdan \beta \alpha ^{2} ni ayirish.
\alpha \beta ^{2}=\alpha \beta ^{2}
0 ni olish uchun \alpha ^{2}\beta va -\beta \alpha ^{2} ni birlashtirish.
\alpha \beta ^{2}-\alpha \beta ^{2}=0
Ikkala tarafdan \alpha \beta ^{2} ni ayirish.
0=0
0 ni olish uchun \alpha \beta ^{2} va -\alpha \beta ^{2} ni birlashtirish.
\text{true}
0 va 0 ni taqqoslang.
\beta \in \mathrm{C}
Bu har qanday \beta uchun to‘g‘ri.
\alpha \beta ^{2}+\alpha ^{2}\beta =\beta \alpha ^{2}+\alpha \beta ^{2}
\alpha \beta ga \alpha +\beta ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\alpha \beta ^{2}+\alpha ^{2}\beta -\beta \alpha ^{2}=\alpha \beta ^{2}
Ikkala tarafdan \beta \alpha ^{2} ni ayirish.
\alpha \beta ^{2}=\alpha \beta ^{2}
0 ni olish uchun \alpha ^{2}\beta va -\beta \alpha ^{2} ni birlashtirish.
\alpha \beta ^{2}-\alpha \beta ^{2}=0
Ikkala tarafdan \alpha \beta ^{2} ni ayirish.
0=0
0 ni olish uchun \alpha \beta ^{2} va -\alpha \beta ^{2} ni birlashtirish.
\text{true}
0 va 0 ni taqqoslang.
\alpha \in \mathrm{R}
Bu har qanday \alpha uchun to‘g‘ri.
\alpha \beta ^{2}+\alpha ^{2}\beta =\beta \alpha ^{2}+\alpha \beta ^{2}
\alpha \beta ga \alpha +\beta ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\alpha \beta ^{2}+\alpha ^{2}\beta -\beta \alpha ^{2}=\alpha \beta ^{2}
Ikkala tarafdan \beta \alpha ^{2} ni ayirish.
\alpha \beta ^{2}=\alpha \beta ^{2}
0 ni olish uchun \alpha ^{2}\beta va -\beta \alpha ^{2} ni birlashtirish.
\alpha \beta ^{2}-\alpha \beta ^{2}=0
Ikkala tarafdan \alpha \beta ^{2} ni ayirish.
0=0
0 ni olish uchun \alpha \beta ^{2} va -\alpha \beta ^{2} ni birlashtirish.
\text{true}
0 va 0 ni taqqoslang.
\beta \in \mathrm{R}
Bu har qanday \beta uchun to‘g‘ri.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}