Asosiy tarkibga oʻtish
α uchun yechish (complex solution)
Tick mark Image
β uchun yechish (complex solution)
Tick mark Image
α uchun yechish
Tick mark Image
β uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\alpha \beta ^{2}+\alpha ^{2}\beta =\beta \alpha ^{2}+\alpha \beta ^{2}
\alpha \beta ga \alpha +\beta ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\alpha \beta ^{2}+\alpha ^{2}\beta -\beta \alpha ^{2}=\alpha \beta ^{2}
Ikkala tarafdan \beta \alpha ^{2} ni ayirish.
\alpha \beta ^{2}=\alpha \beta ^{2}
0 ni olish uchun \alpha ^{2}\beta va -\beta \alpha ^{2} ni birlashtirish.
\alpha \beta ^{2}-\alpha \beta ^{2}=0
Ikkala tarafdan \alpha \beta ^{2} ni ayirish.
0=0
0 ni olish uchun \alpha \beta ^{2} va -\alpha \beta ^{2} ni birlashtirish.
\text{true}
0 va 0 ni taqqoslang.
\alpha \in \mathrm{C}
Bu har qanday \alpha uchun to‘g‘ri.
\alpha \beta ^{2}+\alpha ^{2}\beta =\beta \alpha ^{2}+\alpha \beta ^{2}
\alpha \beta ga \alpha +\beta ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\alpha \beta ^{2}+\alpha ^{2}\beta -\beta \alpha ^{2}=\alpha \beta ^{2}
Ikkala tarafdan \beta \alpha ^{2} ni ayirish.
\alpha \beta ^{2}=\alpha \beta ^{2}
0 ni olish uchun \alpha ^{2}\beta va -\beta \alpha ^{2} ni birlashtirish.
\alpha \beta ^{2}-\alpha \beta ^{2}=0
Ikkala tarafdan \alpha \beta ^{2} ni ayirish.
0=0
0 ni olish uchun \alpha \beta ^{2} va -\alpha \beta ^{2} ni birlashtirish.
\text{true}
0 va 0 ni taqqoslang.
\beta \in \mathrm{C}
Bu har qanday \beta uchun to‘g‘ri.
\alpha \beta ^{2}+\alpha ^{2}\beta =\beta \alpha ^{2}+\alpha \beta ^{2}
\alpha \beta ga \alpha +\beta ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\alpha \beta ^{2}+\alpha ^{2}\beta -\beta \alpha ^{2}=\alpha \beta ^{2}
Ikkala tarafdan \beta \alpha ^{2} ni ayirish.
\alpha \beta ^{2}=\alpha \beta ^{2}
0 ni olish uchun \alpha ^{2}\beta va -\beta \alpha ^{2} ni birlashtirish.
\alpha \beta ^{2}-\alpha \beta ^{2}=0
Ikkala tarafdan \alpha \beta ^{2} ni ayirish.
0=0
0 ni olish uchun \alpha \beta ^{2} va -\alpha \beta ^{2} ni birlashtirish.
\text{true}
0 va 0 ni taqqoslang.
\alpha \in \mathrm{R}
Bu har qanday \alpha uchun to‘g‘ri.
\alpha \beta ^{2}+\alpha ^{2}\beta =\beta \alpha ^{2}+\alpha \beta ^{2}
\alpha \beta ga \alpha +\beta ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\alpha \beta ^{2}+\alpha ^{2}\beta -\beta \alpha ^{2}=\alpha \beta ^{2}
Ikkala tarafdan \beta \alpha ^{2} ni ayirish.
\alpha \beta ^{2}=\alpha \beta ^{2}
0 ni olish uchun \alpha ^{2}\beta va -\beta \alpha ^{2} ni birlashtirish.
\alpha \beta ^{2}-\alpha \beta ^{2}=0
Ikkala tarafdan \alpha \beta ^{2} ni ayirish.
0=0
0 ni olish uchun \alpha \beta ^{2} va -\alpha \beta ^{2} ni birlashtirish.
\text{true}
0 va 0 ni taqqoslang.
\beta \in \mathrm{R}
Bu har qanday \beta uchun to‘g‘ri.