α uchun yechish
\alpha =\frac{1}{\beta }
\beta \neq 0
β uchun yechish
\beta =\frac{1}{\alpha }
\alpha \neq 0
Viktorina
Linear Equation
5xshash muammolar:
\alpha ^ { 2 } + \beta ^ { 2 } = ( \alpha + \beta ) ^ { 2 } - 2
Baham ko'rish
Klipbordga nusxa olish
\alpha ^{2}+\beta ^{2}=\alpha ^{2}+2\alpha \beta +\beta ^{2}-2
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\alpha +\beta \right)^{2} kengaytirilishi uchun ishlating.
\alpha ^{2}+\beta ^{2}-\alpha ^{2}=2\alpha \beta +\beta ^{2}-2
Ikkala tarafdan \alpha ^{2} ni ayirish.
\beta ^{2}=2\alpha \beta +\beta ^{2}-2
0 ni olish uchun \alpha ^{2} va -\alpha ^{2} ni birlashtirish.
2\alpha \beta +\beta ^{2}-2=\beta ^{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2\alpha \beta -2=\beta ^{2}-\beta ^{2}
Ikkala tarafdan \beta ^{2} ni ayirish.
2\alpha \beta -2=0
0 ni olish uchun \beta ^{2} va -\beta ^{2} ni birlashtirish.
2\alpha \beta =2
2 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
2\beta \alpha =2
Tenglama standart shaklda.
\frac{2\beta \alpha }{2\beta }=\frac{2}{2\beta }
Ikki tarafini 2\beta ga bo‘ling.
\alpha =\frac{2}{2\beta }
2\beta ga bo'lish 2\beta ga ko'paytirishni bekor qiladi.
\alpha =\frac{1}{\beta }
2 ni 2\beta ga bo'lish.
\alpha ^{2}+\beta ^{2}=\alpha ^{2}+2\alpha \beta +\beta ^{2}-2
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\alpha +\beta \right)^{2} kengaytirilishi uchun ishlating.
\alpha ^{2}+\beta ^{2}-2\alpha \beta =\alpha ^{2}+\beta ^{2}-2
Ikkala tarafdan 2\alpha \beta ni ayirish.
\alpha ^{2}+\beta ^{2}-2\alpha \beta -\beta ^{2}=\alpha ^{2}-2
Ikkala tarafdan \beta ^{2} ni ayirish.
\alpha ^{2}-2\alpha \beta =\alpha ^{2}-2
0 ni olish uchun \beta ^{2} va -\beta ^{2} ni birlashtirish.
-2\alpha \beta =\alpha ^{2}-2-\alpha ^{2}
Ikkala tarafdan \alpha ^{2} ni ayirish.
-2\alpha \beta =-2
0 ni olish uchun \alpha ^{2} va -\alpha ^{2} ni birlashtirish.
\left(-2\alpha \right)\beta =-2
Tenglama standart shaklda.
\frac{\left(-2\alpha \right)\beta }{-2\alpha }=-\frac{2}{-2\alpha }
Ikki tarafini -2\alpha ga bo‘ling.
\beta =-\frac{2}{-2\alpha }
-2\alpha ga bo'lish -2\alpha ga ko'paytirishni bekor qiladi.
\beta =\frac{1}{\alpha }
-2 ni -2\alpha ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}