Baholash
\frac{3}{2}=1,5
Omil
\frac{3}{2} = 1\frac{1}{2} = 1,5
Baham ko'rish
Klipbordga nusxa olish
\frac{9-\left(8-\left(\frac{4}{12}+\frac{3}{12}\right)\times 6\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
3 va 4 ning eng kichik umumiy karralisi 12 ga teng. \frac{1}{3} va \frac{1}{4} ni 12 maxraj bilan kasrlarga aylantirib oling.
\frac{9-\left(8-\frac{4+3}{12}\times 6\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
\frac{4}{12} va \frac{3}{12} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{9-\left(8-\frac{7}{12}\times 6\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
7 olish uchun 4 va 3'ni qo'shing.
\frac{9-\left(8-\frac{7\times 6}{12}\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
\frac{7}{12}\times 6 ni yagona kasrga aylantiring.
\frac{9-\left(8-\frac{42}{12}\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
42 hosil qilish uchun 7 va 6 ni ko'paytirish.
\frac{9-\left(8-\frac{7}{2}\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
\frac{42}{12} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{9-\left(\frac{16}{2}-\frac{7}{2}\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
8 ni \frac{16}{2} kasrga o‘giring.
\frac{9-\frac{16-7}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
\frac{16}{2} va \frac{7}{2} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{9-\frac{9}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
9 olish uchun 16 dan 7 ni ayirish.
\frac{\frac{18}{2}-\frac{9}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
9 ni \frac{18}{2} kasrga o‘giring.
\frac{\frac{18-9}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
\frac{18}{2} va \frac{9}{2} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{9}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times 6}
9 olish uchun 18 dan 9 ni ayirish.
\frac{\frac{9}{2}}{8-\left(\frac{2}{6}+\frac{3}{6}\right)\times 6}
3 va 2 ning eng kichik umumiy karralisi 6 ga teng. \frac{1}{3} va \frac{1}{2} ni 6 maxraj bilan kasrlarga aylantirib oling.
\frac{\frac{9}{2}}{8-\frac{2+3}{6}\times 6}
\frac{2}{6} va \frac{3}{6} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{9}{2}}{8-\frac{5}{6}\times 6}
5 olish uchun 2 va 3'ni qo'shing.
\frac{\frac{9}{2}}{8-5}
6 va 6 ni qisqartiring.
\frac{\frac{9}{2}}{3}
3 olish uchun 8 dan 5 ni ayirish.
\frac{9}{2\times 3}
\frac{\frac{9}{2}}{3} ni yagona kasrga aylantiring.
\frac{9}{6}
6 hosil qilish uchun 2 va 3 ni ko'paytirish.
\frac{3}{2}
\frac{9}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}