Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(1+\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\frac{1}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
\frac{1}{\sqrt{2}} maxrajini \sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\left(1+\frac{\sqrt{2}}{2}+\frac{1}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
\sqrt{2} kvadrati – 2.
\left(\frac{2}{2}+\frac{\sqrt{2}}{2}+\frac{1}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
1 ni \frac{2}{2} kasrga o‘giring.
\left(\frac{2+1}{2}+\frac{\sqrt{2}}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
\frac{2}{2} va \frac{1}{2} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\left(\frac{3}{2}+\frac{\sqrt{2}}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
3 olish uchun 2 va 1'ni qo'shing.
\frac{3+\sqrt{2}}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
\frac{3}{2} va \frac{\sqrt{2}}{2} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{3+\sqrt{2}}{2}\left(1-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\frac{1}{2}\right)
\frac{1}{\sqrt{2}} maxrajini \sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{3+\sqrt{2}}{2}\left(1-\frac{\sqrt{2}}{2}+\frac{1}{2}\right)
\sqrt{2} kvadrati – 2.
\frac{3+\sqrt{2}}{2}\left(\frac{2}{2}-\frac{\sqrt{2}}{2}+\frac{1}{2}\right)
1 ni \frac{2}{2} kasrga o‘giring.
\frac{3+\sqrt{2}}{2}\left(\frac{2+1}{2}-\frac{\sqrt{2}}{2}\right)
\frac{2}{2} va \frac{1}{2} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{3+\sqrt{2}}{2}\left(\frac{3}{2}-\frac{\sqrt{2}}{2}\right)
3 olish uchun 2 va 1'ni qo'shing.
\frac{3+\sqrt{2}}{2}\times \frac{3+\sqrt{2}}{2}
\frac{3}{2} va \frac{\sqrt{2}}{2} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\left(\frac{3+\sqrt{2}}{2}\right)^{2}
\left(\frac{3+\sqrt{2}}{2}\right)^{2} hosil qilish uchun \frac{3+\sqrt{2}}{2} va \frac{3+\sqrt{2}}{2} ni ko'paytirish.
\frac{\left(3+\sqrt{2}\right)^{2}}{2^{2}}
\frac{3+\sqrt{2}}{2}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{9+6\sqrt{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(3+\sqrt{2}\right)^{2} kengaytirilishi uchun ishlating.
\frac{9+6\sqrt{2}+2}{2^{2}}
\sqrt{2} kvadrati – 2.
\frac{11+6\sqrt{2}}{2^{2}}
11 olish uchun 9 va 2'ni qo'shing.
\frac{11+6\sqrt{2}}{4}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.