Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x^{2}-1\right)^{2}-\left(2+x^{2}\right)^{2}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
Hisoblang: \left(x+1\right)\left(x-1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
\left(x^{2}\right)^{2}-2x^{2}+1-\left(2+x^{2}\right)^{2}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x^{2}-1\right)^{2} kengaytirilishi uchun ishlating.
x^{4}-2x^{2}+1-\left(2+x^{2}\right)^{2}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
x^{4}-2x^{2}+1-\left(4+4x^{2}+\left(x^{2}\right)^{2}\right)+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2+x^{2}\right)^{2} kengaytirilishi uchun ishlating.
x^{4}-2x^{2}+1-\left(4+4x^{2}+x^{4}\right)+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
x^{4}-2x^{2}+1-4-4x^{2}-x^{4}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
4+4x^{2}+x^{4} teskarisini topish uchun har birining teskarisini toping.
x^{4}-2x^{2}-3-4x^{2}-x^{4}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
-3 olish uchun 1 dan 4 ni ayirish.
x^{4}-6x^{2}-3-x^{4}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
-6x^{2} ni olish uchun -2x^{2} va -4x^{2} ni birlashtirish.
-6x^{2}-3+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
0 ni olish uchun x^{4} va -x^{4} ni birlashtirish.
-6x^{2}-3+\left(3x-\frac{9}{2}\right)\left(2x+3\right)
\frac{3}{2} ga 2x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-6x^{2}-3+6x^{2}-\frac{27}{2}
3x-\frac{9}{2} ga 2x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-3-\frac{27}{2}
0 ni olish uchun -6x^{2} va 6x^{2} ni birlashtirish.
-\frac{33}{2}
-\frac{33}{2} olish uchun -3 dan \frac{27}{2} ni ayirish.
\frac{2\left(\left(x+1\right)\left(x-1\right)\right)^{2}-2\left(2+x^{2}\right)^{2}+3\left(2x-3\right)\left(2x+3\right)}{2}
\frac{1}{2} omili.
-\frac{33}{2}
Qisqartirish.