Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2\times \left(\frac{2}{3}\left(x-3\right)\right)^{2}=16\left(7-x\right)
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
2\left(\frac{2}{3}x-2\right)^{2}=16\left(7-x\right)
\frac{2}{3} ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2\left(\frac{4}{9}x^{2}-\frac{8}{3}x+4\right)=16\left(7-x\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\frac{2}{3}x-2\right)^{2} kengaytirilishi uchun ishlating.
\frac{8}{9}x^{2}-\frac{16}{3}x+8=16\left(7-x\right)
2 ga \frac{4}{9}x^{2}-\frac{8}{3}x+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{8}{9}x^{2}-\frac{16}{3}x+8=112-16x
16 ga 7-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{8}{9}x^{2}-\frac{16}{3}x+8-112=-16x
Ikkala tarafdan 112 ni ayirish.
\frac{8}{9}x^{2}-\frac{16}{3}x-104=-16x
-104 olish uchun 8 dan 112 ni ayirish.
\frac{8}{9}x^{2}-\frac{16}{3}x-104+16x=0
16x ni ikki tarafga qo’shing.
\frac{8}{9}x^{2}+\frac{32}{3}x-104=0
\frac{32}{3}x ni olish uchun -\frac{16}{3}x va 16x ni birlashtirish.
x=\frac{-\frac{32}{3}±\sqrt{\left(\frac{32}{3}\right)^{2}-4\times \frac{8}{9}\left(-104\right)}}{2\times \frac{8}{9}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{8}{9} ni a, \frac{32}{3} ni b va -104 ni c bilan almashtiring.
x=\frac{-\frac{32}{3}±\sqrt{\frac{1024}{9}-4\times \frac{8}{9}\left(-104\right)}}{2\times \frac{8}{9}}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{32}{3} kvadratini chiqarish.
x=\frac{-\frac{32}{3}±\sqrt{\frac{1024}{9}-\frac{32}{9}\left(-104\right)}}{2\times \frac{8}{9}}
-4 ni \frac{8}{9} marotabaga ko'paytirish.
x=\frac{-\frac{32}{3}±\sqrt{\frac{1024+3328}{9}}}{2\times \frac{8}{9}}
-\frac{32}{9} ni -104 marotabaga ko'paytirish.
x=\frac{-\frac{32}{3}±\sqrt{\frac{4352}{9}}}{2\times \frac{8}{9}}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1024}{9} ni \frac{3328}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{-\frac{32}{3}±\frac{16\sqrt{17}}{3}}{2\times \frac{8}{9}}
\frac{4352}{9} ning kvadrat ildizini chiqarish.
x=\frac{-\frac{32}{3}±\frac{16\sqrt{17}}{3}}{\frac{16}{9}}
2 ni \frac{8}{9} marotabaga ko'paytirish.
x=\frac{16\sqrt{17}-32}{\frac{16}{9}\times 3}
x=\frac{-\frac{32}{3}±\frac{16\sqrt{17}}{3}}{\frac{16}{9}} tenglamasini yeching, bunda ± musbat. -\frac{32}{3} ni \frac{16\sqrt{17}}{3} ga qo'shish.
x=3\sqrt{17}-6
\frac{-32+16\sqrt{17}}{3} ni \frac{16}{9} ga bo'lish \frac{-32+16\sqrt{17}}{3} ga k'paytirish \frac{16}{9} ga qaytarish.
x=\frac{-16\sqrt{17}-32}{\frac{16}{9}\times 3}
x=\frac{-\frac{32}{3}±\frac{16\sqrt{17}}{3}}{\frac{16}{9}} tenglamasini yeching, bunda ± manfiy. -\frac{32}{3} dan \frac{16\sqrt{17}}{3} ni ayirish.
x=-3\sqrt{17}-6
\frac{-32-16\sqrt{17}}{3} ni \frac{16}{9} ga bo'lish \frac{-32-16\sqrt{17}}{3} ga k'paytirish \frac{16}{9} ga qaytarish.
x=3\sqrt{17}-6 x=-3\sqrt{17}-6
Tenglama yechildi.
2\times \left(\frac{2}{3}\left(x-3\right)\right)^{2}=16\left(7-x\right)
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
2\left(\frac{2}{3}x-2\right)^{2}=16\left(7-x\right)
\frac{2}{3} ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2\left(\frac{4}{9}x^{2}-\frac{8}{3}x+4\right)=16\left(7-x\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\frac{2}{3}x-2\right)^{2} kengaytirilishi uchun ishlating.
\frac{8}{9}x^{2}-\frac{16}{3}x+8=16\left(7-x\right)
2 ga \frac{4}{9}x^{2}-\frac{8}{3}x+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{8}{9}x^{2}-\frac{16}{3}x+8=112-16x
16 ga 7-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{8}{9}x^{2}-\frac{16}{3}x+8+16x=112
16x ni ikki tarafga qo’shing.
\frac{8}{9}x^{2}+\frac{32}{3}x+8=112
\frac{32}{3}x ni olish uchun -\frac{16}{3}x va 16x ni birlashtirish.
\frac{8}{9}x^{2}+\frac{32}{3}x=112-8
Ikkala tarafdan 8 ni ayirish.
\frac{8}{9}x^{2}+\frac{32}{3}x=104
104 olish uchun 112 dan 8 ni ayirish.
\frac{\frac{8}{9}x^{2}+\frac{32}{3}x}{\frac{8}{9}}=\frac{104}{\frac{8}{9}}
Tenglamaning ikki tarafini \frac{8}{9} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x^{2}+\frac{\frac{32}{3}}{\frac{8}{9}}x=\frac{104}{\frac{8}{9}}
\frac{8}{9} ga bo'lish \frac{8}{9} ga ko'paytirishni bekor qiladi.
x^{2}+12x=\frac{104}{\frac{8}{9}}
\frac{32}{3} ni \frac{8}{9} ga bo'lish \frac{32}{3} ga k'paytirish \frac{8}{9} ga qaytarish.
x^{2}+12x=117
104 ni \frac{8}{9} ga bo'lish 104 ga k'paytirish \frac{8}{9} ga qaytarish.
x^{2}+12x+6^{2}=117+6^{2}
12 ni bo‘lish, x shartining koeffitsienti, 2 ga 6 olish uchun. Keyin, 6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+12x+36=117+36
6 kvadratini chiqarish.
x^{2}+12x+36=153
117 ni 36 ga qo'shish.
\left(x+6\right)^{2}=153
x^{2}+12x+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+6\right)^{2}}=\sqrt{153}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+6=3\sqrt{17} x+6=-3\sqrt{17}
Qisqartirish.
x=3\sqrt{17}-6 x=-3\sqrt{17}-6
Tenglamaning ikkala tarafidan 6 ni ayirish.