Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-9x+1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-9\right)±\sqrt{81-4}}{2}
-9 kvadratini chiqarish.
x=\frac{-\left(-9\right)±\sqrt{77}}{2}
81 ni -4 ga qo'shish.
x=\frac{9±\sqrt{77}}{2}
-9 ning teskarisi 9 ga teng.
x=\frac{\sqrt{77}+9}{2}
x=\frac{9±\sqrt{77}}{2} tenglamasini yeching, bunda ± musbat. 9 ni \sqrt{77} ga qo'shish.
x=\frac{9-\sqrt{77}}{2}
x=\frac{9±\sqrt{77}}{2} tenglamasini yeching, bunda ± manfiy. 9 dan \sqrt{77} ni ayirish.
x^{2}-9x+1=\left(x-\frac{\sqrt{77}+9}{2}\right)\left(x-\frac{9-\sqrt{77}}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{9+\sqrt{77}}{2} ga va x_{2} uchun \frac{9-\sqrt{77}}{2} ga bo‘ling.