Baholash
-92a
Kengaytirish
-92a
Baham ko'rish
Klipbordga nusxa olish
\frac{368\left(\frac{3}{28}a^{3}b\left(-\frac{7}{4}\right)b-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 2 va 1 ni qo‘shib, 3 ni oling.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
b^{2} hosil qilish uchun b va b ni ko'paytirish.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
b^{2} hosil qilish uchun b va b ni ko'paytirish.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
-\frac{3}{16} hosil qilish uchun \frac{3}{28} va -\frac{7}{4} ni ko'paytirish.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{4}a^{3}b^{2}\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
-\frac{1}{4} hosil qilish uchun -\frac{1}{8} va 2 ni ko'paytirish.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}+\frac{1}{4}a^{3}b^{2}\right)}{-\frac{1}{4}a^{2}b^{2}}
-\frac{1}{4}a^{3}b^{2} ning teskarisi \frac{1}{4}a^{3}b^{2} ga teng.
\frac{368\times \frac{1}{16}a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
\frac{1}{16}a^{3}b^{2} ni olish uchun -\frac{3}{16}a^{3}b^{2} va \frac{1}{4}a^{3}b^{2} ni birlashtirish.
\frac{23a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
23 hosil qilish uchun 368 va \frac{1}{16} ni ko'paytirish.
\frac{23a}{-\frac{1}{4}}
Surat va maxrajdagi ikkala a^{2}b^{2} ni qisqartiring.
\frac{23a\times 4}{-1}
23a ni -\frac{1}{4} ga bo'lish 23a ga k'paytirish -\frac{1}{4} ga qaytarish.
\frac{92a}{-1}
92 hosil qilish uchun 23 va 4 ni ko'paytirish.
-92a
Istalgan sonni -1 ga boʻlsangiz, uning qarama-qarshisi chiqadi.
\frac{368\left(\frac{3}{28}a^{3}b\left(-\frac{7}{4}\right)b-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 2 va 1 ni qo‘shib, 3 ni oling.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
b^{2} hosil qilish uchun b va b ni ko'paytirish.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
b^{2} hosil qilish uchun b va b ni ko'paytirish.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
-\frac{3}{16} hosil qilish uchun \frac{3}{28} va -\frac{7}{4} ni ko'paytirish.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{4}a^{3}b^{2}\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
-\frac{1}{4} hosil qilish uchun -\frac{1}{8} va 2 ni ko'paytirish.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}+\frac{1}{4}a^{3}b^{2}\right)}{-\frac{1}{4}a^{2}b^{2}}
-\frac{1}{4}a^{3}b^{2} ning teskarisi \frac{1}{4}a^{3}b^{2} ga teng.
\frac{368\times \frac{1}{16}a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
\frac{1}{16}a^{3}b^{2} ni olish uchun -\frac{3}{16}a^{3}b^{2} va \frac{1}{4}a^{3}b^{2} ni birlashtirish.
\frac{23a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
23 hosil qilish uchun 368 va \frac{1}{16} ni ko'paytirish.
\frac{23a}{-\frac{1}{4}}
Surat va maxrajdagi ikkala a^{2}b^{2} ni qisqartiring.
\frac{23a\times 4}{-1}
23a ni -\frac{1}{4} ga bo'lish 23a ga k'paytirish -\frac{1}{4} ga qaytarish.
\frac{92a}{-1}
92 hosil qilish uchun 23 va 4 ni ko'paytirish.
-92a
Istalgan sonni -1 ga boʻlsangiz, uning qarama-qarshisi chiqadi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}