Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}-6x+8=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\times 8}}{2\left(-1\right)}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36+4\times 8}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{36+32}}{2\left(-1\right)}
4 ni 8 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{68}}{2\left(-1\right)}
36 ni 32 ga qo'shish.
x=\frac{-\left(-6\right)±2\sqrt{17}}{2\left(-1\right)}
68 ning kvadrat ildizini chiqarish.
x=\frac{6±2\sqrt{17}}{2\left(-1\right)}
-6 ning teskarisi 6 ga teng.
x=\frac{6±2\sqrt{17}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2\sqrt{17}+6}{-2}
x=\frac{6±2\sqrt{17}}{-2} tenglamasini yeching, bunda ± musbat. 6 ni 2\sqrt{17} ga qo'shish.
x=-\left(\sqrt{17}+3\right)
6+2\sqrt{17} ni -2 ga bo'lish.
x=\frac{6-2\sqrt{17}}{-2}
x=\frac{6±2\sqrt{17}}{-2} tenglamasini yeching, bunda ± manfiy. 6 dan 2\sqrt{17} ni ayirish.
x=\sqrt{17}-3
6-2\sqrt{17} ni -2 ga bo'lish.
-x^{2}-6x+8=-\left(x-\left(-\left(\sqrt{17}+3\right)\right)\right)\left(x-\left(\sqrt{17}-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -\left(3+\sqrt{17}\right) ga va x_{2} uchun -3+\sqrt{17} ga bo‘ling.